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Abstract
Statistical machine translation (SMT) should benefit from linguistic information

to improve performance but current state-of-the-art models rely purely on data-driven

models.

There are several reasons why prior efforts to build linguistically annotated models

have failed or not even been attempted. Firstly, the practical implementation often

requires too much work to be cost effective. Where ad-hoc implementations have

been created, they impose too strict constraints to be of general use. Lastly, many

linguistically-motivated approaches are language dependent, tackling peculiarities in

certain languages that do not apply to other languages.

This thesis successfully integrates linguistic information about part-of-speech tags,

lemmas and phrase structure to improve MT quality.

The major contributions of this thesis are:
1. We enhance the phrase-based model to incorporate linguistic information as ad-

ditional factors in the word representation. The factored phrase-based model

allows us to make use of different types of linguistic information in a systematic

way within the predefined framework. We show how this model improves trans-

lation by as much as 0.9 BLEU for small German-English training corpora, and

0.2 BLEU for larger corpora.

2. We extend the factored model to the factored template model to focus on improv-

ing reordering. We show that by generalising translation with part-of-speech

tags, we can improve performance by as much as 1.1 BLEU on a small French-

English system.

3. Finally, we switch from the phrase-based model to a syntax-based model with

the mixed syntax model. This allows us to transition from the word-level ap-

proaches using factors to multiword linguistic information such as syntactic la-

bels and shallow tags. The mixed syntax model uses source language syntactic

information to inform translation. We show that the model is able to explain

translation better, leading to a 0.8 BLEU improvement over the baseline hier-

archical phrase-based model for a small German-English task. Also, the model

requires only labels on continuous source spans, it is not dependent on a tree

structure, therefore, other types of syntactic information can be integrated into

the model. We experimented with a shallow parser and see a gain of 0.5 BLEU

for the same dataset. Training with more training data, we improve translation

by 0.6 BLEU (1.3 BLEU out-of-domain) over the hierarchical baseline.
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During the development of these three models, we discover that attempting to

rigidly model translation as linguistic transfer process results in degraded performance.

However, by combining the advantages of standard SMT models with linguistically-

motivated models, we are able to achieve better translation performance. Our work

shows the importance of balancing the specificity of linguistic information with the

robustness of simpler models.
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Chapter 1

Introduction

Machine translation (MT) is the application of computers to automatically translate

human languages.

There are a variety of reasons to pursue research into MT. It has obvious practical

usage in enabling people to communicate with others who do not share a common

language. There is simply too much information that we would like to disseminate and

understand in other languages to be translated by hand. As the world becomes more

globalized, this problem can only become more acute. Human translators are a limited

and expensive resource. Machine translation can increase the efficiency of human

translators, replace them entirely, or perform the tasks which would have otherwise

have been left undone.

Furthermore, the modality of communication has become increasingly varied and

instantaneous. Email, mobile texting, instant messaging, online social media and video

conferencing are an integral part of today’s information society. Machine translation

offers the direct and immediate response that would be difficult to achieve with human

translators.

The study of machine translation gives us an insight into language and linguistics,

and to test the utility of our own understanding of these subjects. Lastly, the idealistic

goal of promoting accord and understanding by removing the language barrier has

been the noble aim of many researchers.

1.1 Machine Translation Approaches

With such strong motivation, it is not surprising that research into machine translation

has a long history stretching back as far as the invention of modern computers in the

1



2 Chapter 1. Introduction

1940s and 1950s (Hutchins, 2000).

Early MT systems relied on a collection of translation rules which were manually

created. These so-called rule-based systems are based on linguistically-informed foun-

dations requiring extensive morphological, syntactic and semantic knowledge. The in-

put is transferred to the target using a large set of sophisticated linguistic translation

rules. Translation rules are created manually, demanding significant multilingual and

linguistic expertise. Therefore, rule-based systems require large initial investment and

maintenance for every language pair.

Within the rule-based paradigm, different approaches exist. Transfer-based ma-

chine translation seeks to analyze the grammatical structure of the input. The output

is generated using translation rules which act on this structure. This is the most com-

mon rule-based approach, used by systems such as Systran 1 and OpenLogos 2 and

has been shown to achieve high quality translation for limited domain (Hutchins and

Somers, 1992). However, the analysis, transfer and generation stages follow each other

in sequence, therefore, the multiplication of errors in each stage depresses translation

quality.

Interlingua machine translation strives to understand the semantics of the input and

to capture it in a language-independent representation. The interlingua representation

can then be used to generate the output for any given language, given the appropriate

generation model for that language. While this may be an attractive concept, in practice

it is extremely difficult to create a representation for human language, parse the source

sentence into such a representation, and from it generate the target sentence.

1.2 Statistical Machine Translation

The last two decades have seen a new direction of research where translation rules

are automatically created from parallel corpora. A key part of this statistical machine

translation (SMT) approach is much more reliant on data intensive methods and sta-

tistical techniques, coupled with the dramatic increase and availability of computing

power. Translation rules in SMT systems do not have the human insight of the hand-

written rules and are often noisy but they can be created within hours or days rather

than months or years.

As with the rule-based paradigm, statistical machine translation has also advanced

1 http://www.systransoft.com/
2http://logos-os.dfki.de/

http://www.systransoft.com/
http://logos-os.dfki.de/


1.2. Statistical Machine Translation 3

in a sequence of approaches. The earliest approach starting with (Brown et al., 1993)

was the word-based model which, as the name suggests, translates word-for-word.

These models have largely been superceded by more complex models but they survive

in specific areas such as word alignment (Al-Onaizan et al., 1999) where they serve as

the basis for other models.

Phrase-based models proposed by Zens et al. (2002); Koehn (2004); Koehn et al.

(2007) translate contiguous sequences of words in the source sentence to contiguous

words in the target. The term phrase in this case just means contiguous words, rather

than any syntactic phrasal category,

The phrase-based models significantly improve on the word-based models and re-

main the state-of-the-art for many language pairs, especially between closely related

languages. A reason for their success is their modelling of local reordering and the im-

plicit assumption that most orderings are monotonic, which is usually the case when

translating between closely related languages.

A notable variation on the march from word-based to phrase-based is the align-

ment template system (ATS) (Och and Ney, 2004) which uses a word-based translation

model for lexical translation but models reordering using templates of word-classes.

The hierarchical phrase-based model (Chiang, 2005) extends the phrase-based no-

tion of a phrase from a sequence of words to a sequence of words and subphrases.

Translation rules in hierarchical phrase-based models leverage the strengths of phrase-

based models and model reordering of subphrases too. For example, the French trans-

lation of ‘John misses Mary’ reorders the object and subject, ‘Marie manque à Jean’.

The reordering can be expressed in a hierarchical rule, lexicalized with the translation

of ‘misses’:

〈X1 misses X2 , X2 manque à X1〉 (1.1)

where X1 and X2 are placeholders for subphrases. Hierarchical translation rules can

also model discontiguous phrasal phenomena such as the translation of the French

ne...pas phrase.

〈ne X1 pas , do not X1〉 (1.2)

Formally, translation rules in the hierarchical phrase-based model are production

rules of a synchronous context free grammar (SCFG). Translation with a SCFG parses

the input while simultaneously generating the output. The model is said to be a for-

mally syntax-based MT model without linguistic commitment as its rules are induced

from a parallel corpus without reference to any linguistic annotations or assumptions.
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The hierarchical phrase-based model is particularly suited for language pairs, such

as Chinese-English, which require long-range reordering.

1.3 Why use Linguistic Information in SMT?

Even at the inception of SMT, the utility of linguistic information to translation was

acknowledged. To quote from Brown et al. (1993):

...it is not our intention to ignore linguistics, neither to replace it... we
hope to enfold it in the embrace of a secure probabilistic framework ...
and guide us to better natural language processing systems in general and
to better machine translation systems in particular.

Attempts to form this embrace have been the subject of research ever since.

Statistical machine translation often makes no use of linguistic information, re-

lying purely on corpus data and statistical modelling to train and decode. This is a

convenient, language independent approach which allows translation systems for any

language pairs to be created quickly, given the corpora. However, parallel corpus data

is an expensive resource and not always available in the quantity required to build mod-

els which can perform to acceptable standards. This problem is exacerbated for highly

inflected languages and translation of specialized domains.

It is conjectured that by combining linguistic insight and the strength of the corpora-

based SMT approach, we may be able to create better translation systems. But what

are the shortcomings with machine translation and how in particular can linguistic in-

formation help?

Firstly, natural language is ambiguous. Phenomena such as homographs mean that

we cannot be certain of the use or meaning of some words and how those words are to

be translated. Augmenting such words with linguistic information may help with their

disambiguation and improve translation.

Secondly, language is sparse. Many words and phrases are infrequently seen in the

training corpora, or not seen at all. Linguistic information can be used to generalize

translation, helping to overcome this sparsity.

Thirdly, machine translation is a practical application which must operate within

an environment of finite training corpora, memory and time resources. Arbitrary limits

are often placed on the translation process to ensure that the training and decoding

remain tractable, at the cost of reduced performance. Better translation may result if

linguistically-motivated constraints replace these arbitrary limits.
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The integration of linguistic information into SMT has not been smooth or guaran-

teed to improve translation, and in many cases, adding linguistic information decreases

performance. There are some broad reasons why this is the case.

First, it would be surprising if the linguistic information obtained from tools such

as taggers, parsers and morphological analyzers were to be perfectly suited for ma-

chine translation out-of-the-box. Their objectives are not necessarily aligned with

those of machine translation. Also, integrating such information may make existing

linguistic-free SMT methods more complicated and error prone. Lastly, the linguistic

tools themselves are subject to errors and ambiguity, therefore, they cannot always be

relied upon.

Therefore, to successfully exploit linguistic information it is necessary to use those

parts which are useful, and alter or overcome those which are not.

1.4 Thesis Outline and Contribution

The major contributions of this thesis are as follows:

In Chapter 2, we present the factored phrase-based model which extends the phrase-

based model of Koehn et al. (2003) to incorporate linguistic information as additional

factors in the word representation. When augmenting the surface string with part-of-

speech tags, lemma and morphological information, we show that this aids in the dis-

ambiguation of source words. Output grammaticality is also improved with sequence

models on target factors.

We also studied how the factored translation model can be decomposed into multi-

ple steps where each step outputs a subset of the target factors, conditioned on a subset

of the available source or target factors. We show how this can be constructed to im-

prove coverage of previously out-of-vocabulary words. This leads to overall better

translation when the decomposed model is combined with a standard factored phrase-

based model.

In Chapter 3, the issue of weak reordering models in current phrase-based systems

is discussed. Introducing reordering into SMT models also dramatically expands the

search space, therefore, arbitrary limits are placed on reordering for efficient decod-

ing. However, this negatively affects translation quality. We describe the factored

template model which uses translations of linguistic properties (such as POS tags) to

act as templates for reordering of surface phrases. When the factored template model

is combined with a standard factored phrase-based model, we see improved short and
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mid-range reordering, leading to overall better translation.

Both the factored model and factored template model, above, are wedded to word-

level information which limits its usefulness for improving long-range dependency.

In Chapter 4, we extend the word-level information to information on continu-

ous spans of the source sentence. We also transition from the phrase-based model

to a model based on synchronous context-free grammar (SCFG). SCFG-based mod-

els offer a natural fit with multi-word linguistic annotation that we are interested in

studying. Chapter 4 presents a novel tree-to-string model, the mixed-syntax model,

which combines the specificity of syntactic models and the generality of the hierarchi-

cal phrase-based model. We show how this model outperforms both the tree-to-string

and hierarchical phrase-based models.

We conclude in Chapter 6 with some discussion of future work.

1.5 Experimental Setup

We used the Moses SMT toolkit (Koehn et al., 2007) throughout the thesis for training

and decoding. Table 1.1 list the pertinent experimental variables used in each chapter.

Due to these differences and the drift of the Moses codebase over time, the models are

comparable only with their baseline but not strictly comparable between chapters.



1.5. Experimental Setup 7

C
ha

pt
er

2
C

ha
pt

er
3

C
ha

pt
er

4

Sm
al

l-
sc

al
e

L
ar

ge
-s

ca
le

Sm
al

l-
sc

al
e(

D
e-

E
n)

Sm
al

l-
sc

al
e(

Fr
-E

n)
L

ar
ge

-s
ca

le
(F

r-
E

n)
Sm

al
l-

sc
al

e
Sm

al
l-

sc
al

e
(c

hu
nk

s
ta

gs
)

L
ar

ge
-s

ca
le

D
at

a
Tr

ai
ni

ng
co

rp
us

pr
oj

-s
yn

di
ca

te
2

eu
ro

pa
rl

-v
5

pr
oj

-s
yn

di
ca

te
2

ne
w

s-
co

m
m

en
ta

ry
eu

ro
pa

rl
-v

3
ne

w
s-

co
m

m
en

ta
ry

09
ne

w
s-

co
m

m
en

ta
ry

09
eu

ro
pa

rl
-v

5

Tu
ni

ng
co

rp
us

de
v2

00
6

de
v2

00
6

de
v2

00
6

de
v2

00
6

de
v2

00
6

ne
w

s-
de

v2
00

9a
ne

w
s-

de
v2

00
9a

de
v2

00
6

Te
st

co
rp

us
(i

n-
do

m
ai

n)
nc

-d
ev

te
st

20
07

de
vt

es
t2

00
6

nc
-d

ev
te

st
20

07
nc

-d
ev

te
st

20
07

te
st

20
07

ne
w

s-
de

v2
00

9b
ne

w
s-

de
v2

00
9b

de
vt

es
t2

00
6

Te
st

co
rp

us
(o

ut
-o

f-
do

m
ai

n)
de

vt
es

t2
00

6
ne

w
st

es
t2

00
7

de
vt

es
t2

00
6

de
vt

es
t2

00
6

de
vt

es
t2

00
6

-
-

nc
-d

ev
20

07

Tr
ai

ni
ng

Tr
an

sl
at

io
n

m
od

el
fe

at
ur

e
fu

nc
tio

ns
p(

t|s
),

p(
s|t
),

le
x(

t|s
),

le
x(

s|t
),

ph
ra

se
co

un
t 1

as
(1

)
as

(1
)

as
(1

)
as

(1
)

p(
t|s

),
ph

ra
se

co
un

t 2
as

(2
)

as
(2

)

C
as

in
g

m
et

ho
do

lo
gy

L
ow

er
ca

se
Tr

ue
ca

se
L

ow
er

ca
se

L
ow

er
ca

se
L

ow
er

ca
se

Tr
ue

ca
se

Tr
ue

ca
se

Tr
ue

ca
se

L
M

sm
oo

th
in

g
in

te
rp

ol
at

e,
K

-N
di

sc
ou

nt
in

g 1
as

(1
)

as
(1

)
as

(1
)

as
(1

)
as

(1
)

as
(1

)
as

(1
)

Ph
ra

se
ta

bl
e

sm
oo

th
in

g
U

ns
m

oo
th

ed
G

oo
d-

Tu
ri

ng
U

ns
m

oo
th

ed
U

ns
m

oo
th

ed
U

ns
m

oo
th

ed
G

oo
d-

Tu
ri

ng
G

oo
d-

Tu
ri

ng
G

oo
d-

Tu
ri

ng

M
ax

im
um

tr
ai

ni
ng

se
nt

en
ce

le
ng

th
40

80
40

80
80

80
80

80

E
xc

lu
de

no
n-

pa
rs

e
se

nt
en

ce
s

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

Y
es

Tu
ni

ng
an

d
E

va
lu

at
io

n
A

ut
om

at
ic

ev
al

ua
tio

n
m

et
ri

c
ni

st
-b

le
u

ni
st

-b
le

u
ni

st
-b

le
u

ni
st

-b
le

u
ni

st
-b

le
u

ni
st

-b
le

u
ni

st
-b

le
u

m
ul

ti-
bl

eu

C
as

e-
se

ns
iti

ve
ev

al
ua

tio
n

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

E
xc

lu
de

no
n-

pa
rs

e
se

nt
en

ce
s

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

N
o

tr
an

sl
at

io
n

fo
rn

on
-p

ar
se

se
nt

en
ce

s
N

o
N

o
N

o
N

o
N

o
Y

es
N

o
N

o

Ta
bl

e
1.

1:
E

xp
er

im
en

ta
lv

ar
ia

bl
es

of
ea

ch
ex

pe
rim

en
ti

n
th

e
th

es
is



8 Chapter 1. Introduction

1.6 Related publications

This thesis is based on the following publications:

1. Parts of Chapter 2 were presented in our published papers ‘Open Source Toolkit

for Statistical Machine Translation’ (Koehn et al., 2006) and ‘Factored Trans-

lation Models’ (Koehn and Hoang, 2007), presented at the Johns Hopkins Uni-

versity Summer Workshop 2006 and in the proceedings of Empirical Methods

in Natural Language Processing, respectively. This is joint work with Philipp

Koehn et al. The software developed for this was also described in Koehn et al.

(2007); Hoang and Koehn (2008).

2. Chapter 3 expands on ‘Improving Mid-Range Re-Ordering using Templates of

Factors’ (Hoang and Koehn, 2009), published in the proceedings of the European

chapter of the Association of Computational Linguistics.

3. Chapter 4 is based on ‘Improved Translation with Source Syntax Labels’ (Hoang

and Koehn, 2010) published in the proceedings of the Association of Computa-

tional Linguistics workshop on machine translation. The accompanying soft-

ware is described in Hoang et al. (2009).



Chapter 2

Factored Translation

Many language phenomena are strongly correlated to the linguistic properties of words,

for example, adjective-noun agreements in Romance languages are dependent on the

word classes, number and gender agreements are dependent on the word morphol-

ogy. These linguistic properties are latent in standard phrase-based models and must

be inferred from context and the surface form. We study the advantages of making

these properties explicit. Also, the linguistic properties are usually less sparse than the

surface form, making it easier to collect reliable statistics. We study how linguistic

properties can be used to generalize existing translation and language models.

This chapter begins our study of how linguistic information can help statistical ma-

chine translation, specifically phrase-based SMT, what kind of linguistic information,

and the issues that using it may bring up. We describe the ideas and components behind

the factored translation model and present results on German-English experiments on

the small news commentary. This chapter also lays the foundation for the next chap-

ter on factored templates where we focus on using linguistic information to improve

reordering.

In the process, we also create a framework for integrating word-level information

into phrase-based SMT. Parts of this chapter is also based on (Hoang and Koehn, 2008;

Hoang et al., 2009), which described the publicly available Moses toolkit which was

created for this thesis. Other papers on this toolkit include (Koehn and Hoang, 2007;

Koehn et al., 2006).

9
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2.1 Model

2.1.1 Phrase-Based Model

The factored translation model is based on the phrase-based model (Koehn et al., 2003)

and extends it to model variables representing linguistic information. We therefore take

time to recap the phrase-based model before giving the formal definition of factored

translation model.

SMT models the probability of a target translation, the objective of SMT is to find

the target translation with the maximum probability, given a source sentence. That

is, for a source sentence s, the objective is to find a target translation t̂ which has the

highest conditional probability p(t|s). Mathematically, this is written as:

t̂ = argmax
t

p(t|s) (2.1)

where the arg max function is the search. The model probability, p(t|s), can be factor-

ized into three parts using Bayes’ rule.

p(t|s) = p(t)
p(s)

p(s|t) (2.2)

The noisy channel model of SMT uses this reformulation to express its objective:

t̂ = argmax
t

p(t)p(s|t) (2.3)

The prior, p(s), can be omitted as it is constant for each source sentence. The prob-

ability of the output, p(t), is approximated by an n-gram language model (Stolcke,

2002).

The translation probability p(s|t) is calculated by decomposing the translation into

multiword phrases. The phrase-based model translates sentences by segmenting the

source into contiguous segments and translating each segment independently. The

translated segments can be in a different order on the target side.

We define a variable b = (starts,ends,startt ,endt) as two sets of contiguous spans

on the source and target sentence, and p(sb|tb) as the probability that the target phrase

in span [startt ,endt ] is translated to the source phrase in span [starts,ends].

p(s|d, t) = ∏
b∈d

p(sb|tb) (2.4)

p(s,d|t) = p(s|d, t)p(d|t)
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where d = {b∗} is a set of b which covers all words in the source and target sentence

once and only once. p(sb|tb) is the phrasal translation probability learnt from a parallel

corpus, using the relative values of the source and target spans in b.

p(d|t) combines the reordering and segmentation probabilities which is usually

termed the derivation probability. In phrase-based models, this is weakly modelled by

a relative distance-based distortion model and phrase count features. The translation

probability p(s|t) is calculated by summing over all possible derivations of the source

sentence.

p(s|t) = ∑
d

p(s,d|t) (2.5)

Inserting this back into the noisy channel model results in the following formula:

t̂ = argmax p(t)p(s|t) (2.6)

= argmax p(t)∑
d

p(s,d|t)

This approach is known as maximum translation (Blunsom and Osborne, 2008). How-

ever, the summation over all segmentations is intractable for all but the smallest models

and short sentences. Therefore, the maximum derivation approach approximates p(t|s)
by using the segmentation with the highest probability. This is commonly known as

the Viterbi approximation (Jelinek, 1998).

t̂ = argmax
t

p(t)p(s|t) (2.7)

≈ argmax
t,d

p(t)p(s,d|t)

≈ argmax
t,d

p(t)p(d|t)∏
b∈d

p(sb|tb)

The log-linear model generalizes the noisy channel model to include more compo-

nent models and weighting each model according to the contribution of each model to

the total probability.

p(t|s) = 1
Z

exp(∑
m

λmhm(t,s)) (2.8)

where λm is the weight, and hm is the feature function, or ‘score’, for model m. Z is the

partition function which can be ignored for optimization. The log-linear formulation

in phrase-based SMT uses log probabilities as feature functions, in addition to features

which do not have a probabilistic interpretation. Typical feature functions include the

log transforms of the translation model probabilities, pT M(t|s) and pT M(s|t), which we

have suffixed with T M to avoid confusion with the overall model probability p(t|s) and
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p(s|t). The normalization factor Z does not affect optimization, and the exp() function

is monotonic, therefore the log-linear model can be expressed as a linear model.

argmax
t

p(t|s) = argmax
t

h(t,s) (2.9)

argmax
t

h(t,s) = argmax
t ∑

m
λmhm(t,s)

2.1.2 Factored Model

The factored model extends the standard phrase-based model by redefining a word

from a single symbol to a vector of factors. The surface string is a factor for each word

but additional factors can be added as required, in source and target words. A phrase,

s and t, remains a sequence of words:

s = [s1,s2, ...,s|s|]

t = [t1, t2, ..., t |t|]

where si is the ith source word, and similarly for t i. Each word is composed of a vector

of factors:

si = [si
1,s

i
2, ...,s

i
|S|]
′

t i = [t i
1, t

i
2, ..., t

i
|T |]
′

where word si contains factors si
1,s

i
2, ...,s

i
|S|. S is an ordered set of source factor types.

t i
1 and T are similarly defined for the target language. For convenience, we can refer

to a factor by name or by index, and we can refer to a sequence of factors within a

phrase. For example, the sequence of (1) surface factors in the target string t, and (2),

the part-of-speech and lemma in the ith source word is shown below:

tsur f ace = [t1
sur f ace, t

2
sur f ace, ..., t

|t|
sur f ace]

si
POS,lemma = [si

POS,s
i
lemma]

′

All source factors are given as input. The target surface factors are the output

of the model, while the other target factors are latent variables. The factored model

reformulates the basic SMT formula of Equation 2.1 to take factors into account.

t̂sur f ace = arg max
tsur f ace

p(tsur f ace|s) (2.10)

Translation is modelled as a process which jointly translates all target factors, con-

ditioned on all source factors, p(t|s). However, we are only concerned with the surface
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string output, therefore, the conditional probability of the target surface string can be

arrived at by marginalizing the other target factors. Assuming the surface factor is t1:

p(t1|s) = ∑
t2

∑
t3
...∑

t|T |

p(t1, ..., t|T ||s) (2.11)

However, this summation is often intractable so the maximum derivation principle

recalling Equation 2.7, is applied to find t̂sur f ace:

t̂sur f ace ≈ argmax
t

p(t|s) (2.12)

This allows us to focus on modelling translation as the joint probability of all target

factors, given all source factors, p(t|s). Without loss of generality, we can use the chain

rule to rewrite this probability as

p(t|s) = p(t1, ..., t|T ||s) (2.13)

= p(t1|s)p(t2|t1,s)p(t3|t2, t1,s)...p(t|T ||t|T |−1:1,s)

where f is an index into the ordered set of target factor types T .

The factored model limits the factorization of the conditional probability to two

types of mapping steps:

1. p(tout |sin), the conditional probability of a non-empty set target factors, given a

non-empty set of source factors. We call this a translation step.

2. p(tout |tin), the conditional probability of a non-empty set target factors, given a

non-empty set of target factors. We call this a generation step.

Factorizing the probability with these limitations requires conditional independence

assumptions; factorizing with a translation step implies the independence of the set of

target factors, out, from other source and target factors, given the source factors in.

Likewise, using a generation step implies the independence of set out of target factors,

from other target and all source factors, given the target factors in.

The phrase-based model in Section 2.1.1 relies on the log-linear model to pro-

vide the foundation for incorporating the translation model, pT M(t|s), in addition to

pT M(s|t) as features in the model. The factored model seeks to factorize the transla-

tion model probabilities, rather than the overall probability. Therefore, the factored

model decomposes the translation model, pT M, into a series of mapping steps in Equa-

tion 2.14.

pT M(t|s) = ∏
r∈τ

p(tout(r)|sin(r))×∏
g∈γ

p(tout(g)|tin(g)) (2.14)

where
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1. τ is the set of translation steps

2. γ is the set of generation steps

3. out(i) is the set of factor types for step i that the step is estimating

4. in(i) is the set of factor types for step i on which it is conditioned.

For example, when |T |= 3 and |S|= 3

p(t|s) = p(t1, t2, t3|s1,s2,s3) (2.15)

If we want to factorize this into three mapping steps:

1. t1 is created by a generation step from t2 and t3

2. t2 is created by a translation step from s2

3. t3 is created by a translation step from s3

We can use the chain rule without making any assumptions:

p(t|s) = p(t1, t2, t3|s1,s2,s3) (2.16)

= p(t1|t2, t3,s1,s2,s3)p(t2|t3,s1,s2,s3)p(t3|s1,s2,s3) (2.17)

However, the factorization as outlined above makes independence assumptions:

t1⊥s1,s2,s3|t2, t3 ⇒ p(t1|t2, t3,s1,s2,s3) = p(t1|t2, t3)

t2⊥t1, t3,s1,s3|s2 ⇒ p(t2|t3,s1,s2,s3) = p(t2|s2)

t3⊥t1, t2,s1,s2|s3 ⇒ p(t3|s1,s2,s3) = p(t3|s3)

⇒ p(t|s) = p(t1|t2, t3)p(t2|s2)p(t3|s3)

The probability of each translation step, p(tout(r)|sin(r)), is calculated as the prod-

uct of the probability of a series of multiword phrases in the same way as standard

phrase-based models. However, the segmentation of all factorized translation steps are

identical. This simplifies decoding so that the combined translation model, pT M(t|s),
can be constructed during the preprocessing phase before decoding, making the decod-

ing algorithm identical to the standard, non-factored algorithm. Each generation step

is processed word-by-word.

∏
r∈τ

p(tout(r)|sin(r)) = ∏
r∈τ

∏
b∈d

pT M(tb
out(r)|s

b
in(tr)) (2.18)

∏
g∈γ

p(tout(g)|tin(g)) = ∏
g∈γ

∏
i=1..|t|

p(t i
out(g)|t

i
in(g)) (2.19)
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where d is the set of coupled source and target spans that covers every word position

once and only once in s and t. The log probability of each step is simply used as a

feature function within the log-linear model.

{hr = log p(tout(r)|sin(r))}r∈τ (2.20)

{hg = log p(tout(e)|tin(g))}g∈γ (2.21)

2.1.3 Factor Sequence Models

The probability of the target surface string p(tsur f ace) is often estimated with a Markov

model of the target language (Stolcke, 2002), called an n-gram language model (LM),

which operates on the sequence of surface strings. From empirical evidence, the lan-

guage model is an important component model in phrase-based SMT that improves

output fluency and grammaticality, assisting the MT decoder to make better lexical

choices and re-ordering phrases.

However, there are limitations with using language models on surface forms. Firstly,

data sparsity hinders the accuracy of probability estimates, especially for high-order n-

gram models. Backoff strategies and interpolation may enhance the accuracy of high-

order models a little but a realistic maximum language model n-gram is still very short,

typically 3-5 words.

Secondly, language models do not attempt to use the linguistic relationship of

words to improve accuracy. Factored language models (FLM) (Bilmes and Kirchhoff,

2003) overcome this by using linguistic information such as POS tags and morphol-

ogy. FLM view words as a vector of factors, just as in the factored translation, using

the surface forms but backing off to other factors where necessary. FLM models pre-

dict the sequence of factors, p(t i
1:K|t

i−1:i−n
1:K ), where n is the n-gram order, rather than

just the sequence of surface factors. K is the number of factors.

A sequence model only models the sequence of a specific factor, t f . This contrasts

with FLMs, which models the sequence of all factors, t1:K . Similarly, a language model

models the sequence of just the surface form, tsur f ace.

By targeting specific factors, the n-gram order of the sequence model can be ad-

justed to the data and sparsity of that factor. For instance, a higher order sequence

model over POS tags may be possible due to the size of the tag set. This could improve

grammaticality and long range ordering by guiding the translation to target strings with

more plausible POS sequences.
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We model the probability of the target sequence of factors p(t) as the weighted

product of sequence models on each factor i. Each factor i may have multiple sequence

models.

p(t) =
|T |

∏
i=1

∏
j∈Ji

p j(ti)λi, j (2.22)

log p(t) =
|T |

∑
i=1

∑
j∈Ji

λi, j log p j(ti) (2.23)

where Ji is the set of sequence models for factor i, p j(ti) is the probability of the se-

quence of factors ti predicted by model j, and λi, j is the weight for factors i, model j.

This formulation conveniently fits into the log-linear model used to evaluate the ma-

chine translation output by using the log transform of each sequence model probability

as a feature function in the log-linear framework.

{hi, j = log p j(ti)}i, j (2.24)

2.1.4 Examples

The source and target factors can be viewed as vertices in a directed, acyclic hyper-

graph where each edge represents a mapping step. We illustrate the factored model

with a series of hypergraphs, below. Figure 2.1(a) illustrates the traditional non-

factored translation model which simply maps surface forms of the source to target.

In the factored framework, the translation model parameter is expressed as a probabil-

ity of factors.

pT M(t|s) = p(tsur f ace|ssur f ace) (2.25)

where tsur f ace and ssur f ace are a sequence of surface factors in the target and source

language, respectively.

Figure 2.1(b) shows surface and part-of-speech factors used jointly in one transla-

tion model. Equation 2.26 is the translation probability for this model.

pT M(t|s) = p(tsur f ace,pos|ssur f ace,pos) (2.26)

The joint translation model, using all available factors in the source and target, serves

as a baseline for later experiments when the translation is decomposed.

Figure 2.2(a) illustrates a factorization of the translation model p(tsur f ace,pos|ssur f ace)

into a translation and a generation step. The motivation in this model is to create POS
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(a) Traditional non-factored transla-

tion model

(b) Jointly translating surface and POS

tags

Figure 2.1: Basic Translation Models

tags for modelling with POS sequence models. By factorization, we hope to reduce

data sparsity of the joint factor translation model and achieve better parameterization.

pT M(t|s) = p(tsur f ace,pos|ssur f ace) (2.27)

= p(tsur f ace|ssur f ace)p(tpos|tsur f ace,ssur f ace)

≈ p(tsur f ace|ssur f ace)p(tpos|tsur f ace)

tpos ⊥ ssur f ace|tsur f ace

Figure 2.2(b) extends the previous model by simply creating two factors on the

target side using the same generation model.

pT M(t|s) = p(tsur f ace,pos,lemma|ssur f ace) (2.28)

= p(tsur f ace|ssur f ace)p(tpos, tlemma|tsur f ace,ssur f ace)

≈ p(tsur f ace|ssur f ace)p(tpos,lemma|tsur f ace)

tpos, tlemma ⊥ ssur f ace|tsur f ace

A model that we shall discuss later in this chapter is illustrated in Figure 2.3. This

is an attempt to tackle the problem of data sparsity in the surface form by indepen-

dently translating less sparsed linguistic factors which are then reconstructed in the

target language with a generation step. This decomposition takes inspiration from

the analysis-synthesis approach common in rule-based MT systems such as (Carme
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(a) (b)

Figure 2.2: Factorizing into 1 translation model and 1 generation model

Armentano-Oller et al., 2005).

pT M(t|s) = p(tsur f ace,lemma,POS|tsur f ace,lemma,POS) (2.29)

= p(tlemma|ssur f ace,lemma,POS)p(tpos|ssur f ace,lemma,POS)p(tsur f ace|tlemma,pos,ssur f ace,lemma,POS)

≈ p(tlemma|slemma)p(tpos|sPOS)p(tsur f ace|tlemma,pos)

tlemma ⊥ ssur f ace,spos|slemma

tpos ⊥ ssur f ace,slemma|spos

tsur f ace ⊥ ssur f ace,spos,slemma|tpos, tlemma

Figure 2.3: Analysis and Generation Translation Model
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2.2 Decoding

In the previous section, we discussed the formal definition of decomposing a trans-

lation model into translation and generation steps. This section describe how to de-

code with translation and generation steps. The factored model is an extension of the

phrase-based model so we will recap phrase-based decoding in detail before describing

the factored model extension.

2.2.1 Phrase-Based Decoding

The task of SMT is to find the best translations, given a source sentence, which is

formally encapsulated in the equation below:

t̂ = argmax
t∈T

p(t|s) (2.30)

Decoding is the task of finding the most probable translation t̂ from all possible trans-

lations in T , corresponding to the argmax function.

This section describes the phrase-based decoding algorithm, as implemented in

Pharaoh (Koehn, 2004) and Moses (Hoang and Koehn, 2008). The algorithm is a

dynamic program which has elements of both stack and beam searches(Jelinek, 1969).

A heuristic is used to make hypotheses in the same stack comparable for pruning.

Although pruning is applied,which makes the search algorithm not admissible, the

results are good enough.

Target strings are constructed left-to-right on the target side. We describe the dif-

ferent phases of the decoding process below.

2.2.2 Translation Option

For each contiguous span of the source sentence, rules are found in the phrase table

which matches the source phrase in the span. Only the top scoring rules are kept for

the search stage while the rest are pruned according to the table pruning parameters.

The future score of each rule is used to decide which rules to prune. This calculation

is described in Section 2.2.6.

A translation option is a rule which has been retained after the table pruning that

pertains to a specific source span. Translation options encapsulate the rule from the

translation model as well as the local feature and estimated non-local feature scores.

Once all translation options for a particular sentence are created, the search algo-

rithm can proceed.
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2.2.3 Hypotheses

A translation of a source sentence is created by applying a series of translation options

which together translate each source word once, and only once. Each partial trans-

lation is called a hypothesis, which is created by applying a translation option to an

existing hypothesis. This process is called hypothesis expansion and starts with a hy-

pothesis that has translated no source word and ends with a completed hypothesis that

has translated all source words. The highest-scoring completed hypothesis, according

to the model score, is returned as most probable translation, t̂. Incomplete hypotheses

are referred to as partial hypotheses.

Each translation option translates a contiguous sequence of source words but suc-

cessive translation options do not have to be adjacent on the source side, depending

on the distortion limit. However, the target output is constructed strictly left-to-right

from the target string of successive translation options. Therefore, successive trans-

lation options which are not adjacent and monotonic in the source causes translation

reordering.

To conserve memory and speed, the target output is not stored with each hypothe-

sis. Instead, the hypothesis contains a reference to translation option and a backpointer

to the best previous hypothesis it extended. The target output for any hypothesis can be

computed by simply following the backpointer and recursively extracting each target

phrase from the translation option (Ney and Ortmanns, 1997).

2.2.4 Beam Search

The aim of the search algorithm is to find the best scoring completed hypothesis. If the

heuristic used to estimate the score to completion is admissible, that is, it never over-

estimates the score to translation the rest of the sentence of any partial hypothesis, it is

guaranteed to find the optimal hypothesis. However, non-local feature functions such

as language models and distortion models make estimating this heuristic intractable.

Neither is it computationally feasible to use a brute force method of evaluating

every possible translation for anything but the smallest source input and very tight dis-

tortion limits. Instead we create a large number of completed hypotheses then choose

the best hypothesis from this set. The set is a subset of all possible translations but it is

hoped that this set will contain the best scoring hypothesis, or at least a good enough

hypothesis.

A beam search algorithm is used to create the completed hypothesis set efficiently.
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Partial hypotheses are organized into stacks where each stack holds a number of com-

parable hypotheses. Hypotheses in the same stack have the same coverage cardinality

|C|, where C is the coverage set, C ⊆ {1,2, ...|s|} of the number of source words trans-

lated. Therefore, |s|+ 1 number of stacks are created for the decoding of a sentence

s. There exist other stack layouts (Ortiz-Martı́nez et al., 2006) but the use of coverage

cardinality is the most common and the method we use.

The first stack, stack0, is seeded with an empty hypothesis which has translated no

source words. New hypotheses are created by extending the empty hypothesis with a

translation option, the new hypothesis is inserted into the stack according to the number

of source words translated. stack1 to stack|s|−1 is processed in the same manner. At

the end, stack|s| contains completed hypotheses, i.e. those that have translated every

word in the source sentence. The highest scoring hypothesis is returned from this set as

the best translation. When extending hypotheses, a translation option can only be used

if the resulting hypothesis translates each source word at most once and the distortion

constraint is adhered to. The pseudocode for the stack decoding algorithm is shown in

Figure 2.4.

insert empty hypothesis into stack0

for i = 0 to |s|−1 do
prune stacki

for all hypothesis in stacki do
for all translation options do

if hypothesis and translation option are compatible then
expand hypothesis with translation option→ new hypothesis

coverage of new hypothesis→C

insert new hypothesis→ stack|C|
recombine new hypothesis if possible

prune stack|C| if necessary

end if
end for

end for
end for
return highest scoring hypothesis in stack|s|

Figure 2.4: Stack Decoding algorithm
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2.2.5 Hypothesis Recombination

Hypothesis expansion can be optimized by considering the contextual information used

by the language model. We start from the fact that two partial hypotheses which have

identical coverage sets and are limited by identical distortion constraints can be ex-

panded by the same set of translation options. The two hypotheses may differ in their

derivations and score.

Therefore, in the absence of non-local feature functions, we can make a risk-free

decision to discard the lower scoring hypothesis because it cannot surpass the higher

scoring hypothesis. This decision is called hypothesis recombination.

However, in the presence of non-local feature functions such as a language model,

we can still make the risk-free decision but we must change which properties of the

hypotheses must match in order for the hypotheses to be recombined. A language

model of n-gram order n requires the last n−1 target words of the previous hypothesis

to score a new hypothesis. Two hypotheses which differ in their last n−1 target words

may have different language model scores when expanded with the same translation

option. Therefore, we can recombine the hypotheses only when their last n−1 target

words are identical because only then can we guarantee that the relative scores of

the hypotheses will remain the same. (In fact, language models often use a back-off

strategy to deal with data sparsity where it uses information from a shorter n-gram if

a long-gram does not exist. This information is captured in the language model state

which we use to compare two strings, instead of the target words, and can result in

more aggressive hypothesis recombination. This optmization is described in (Och and

Ney, 2004).

Other non-local feature functions such as lexicalized re-ordering (Tillmann, 2004)

use different contextual information to calculate their scores. This must also be taken

into account when performing hypothesis recombination.

2.2.6 Pruning

Discarding hypotheses by recombination reduces the number of hypotheses that need

to be evaluated. However, the search space for the phrase-based model is so large that

hypothesis recombination alone is not enough to make the search algorithm tractable.

We have to resort to risky pruning strategies which discard hypotheses that are unlikely,

but not certain, to result in a good translation. A combination of histogram pruning

and threshold pruning (Ney, 1992) is employed to discard low scoring hypotheses.
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Pruning is isolated to individual stacks to enable some degree of comparability between

hypotheses.

However, even in the same stack, hypotheses are not totally comparable. Hy-

potheses may exhibit systematic differences which favour those which translate ‘easy’

source phrases over hypotheses which have translated more difficult, ambiguous phrases.

To offset this effect, the hypothesis’ estimated score to completion is used when con-

sidering them for pruning, rather than just their current score. The estimated score to

completion is often called the future cost and is calculated by adding the current score

with the estimated score of translating the remaining untranslated source words.

h(t,s) ≈ h(t ′,s,C)+h′(C̄) (2.31)

C̄ = {1, .., |s|}−C

where h(t ′,s,C) is the score of a hypothesis that has translated the source words in

coverage set C as t ′. h′(C̄) is the future cost.

The future cost of translating a contiguous span is calculated from the optimistic

estimate of the set of translation options in the span using a dynamic programming

algorithm. Formally,

h′([start,end]) = max

[
h′(O[start,end])

maxi∈[start,end] h′(O[start,i])+h′([i+1,end])

]
(2.32)

h′(O[start,end]) =

{
maxo∈O(h(o)) if |O[start,end]|> 0

−∞ otherwise

}
where h′([i, j]) is the estimate score for contiguous span [i, j], O[i, j] is the set of trans-

lation options for the contiguous span [i, j], h′(O[i, j]) is best estimated score from the

set of translation options O[i, j], where each translation option o has score h(o).

h(o) is the weighted local feature scores and estimates of non-local features. Local

feature functions in the standard phrase-based model include the word count and phrase

count features, and the translation model features.

Equation 2.32 computes the estimated score of all contiguous span. The estimated

score of an arbitrary non-contiguous coverage set, h′(C̄), can be calculated simply

as the summation of the largest contiguous spans that composes it. The future cost,

h′(C̄), allows better comparison between hypotheses, reducing search errors due to

stack pruning.

Language model require contextual information external to the phrase pair so can-

not be calculated accurately before the search phase. Instead, an estimate of the lan-

guage model score for each rule is used which models probability of the target words
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in the rule but does not include the probability of n-grams that span adjacent rules. The

language model probability is estimated as follows:

p′LM(t1:|t|) = p(t1)p(t2|t1)...p(t |t||t |t|−1:|t|−n+1) (2.33)

where t is the target side of the rule and n is the n-gram order of the language model.

The distortion model is also a non-local feature. We do not estimate its contribution

to the future score but some methods have been proposed to do this (Moore and Quirk,

2007; Green et al., 2010).

2.3 Factored Model Decoding

2.3.1 Construction of Translation Options

The phrase-based decoding algorithm creates translation options for each source sen-

tence before decoding the sentence. Translation options in the standard phrase-based

model are created by looking up phrase-pairs from a translation model.

The factored translation model extends the standard phrase-based model by com-

posing translation options from a series of translation and generation steps, according

to the pre-defined factorization. Each mapping step corresponds to a phrase table or

generation model.

As defined in Equation 2.18, the creation of factorized translation options is made

easier by constraining every translation step to using the same source and target seg-

mentation during decoding. Therefore, each translation option contains exactly one

phrase-pair from each translation step. All such phrase pairs for a particular trans-

lation option have the same source and target length and apply to the same source

segment. Creation of translation options is also made easier by using the word-based

generation steps of Equation 2.19.

The mapping steps are implemented as an ordered sequence rather than two un-

ordered sets τ and γ in Equation 2.14, however, this does not change the model. A

sequence is chosen to reduce the computational burden of constructing translation op-

tions; the factors required as a condition in one step are created by the preceding steps.

For example, the factorization

pT M(t|s) = p(tsur f ace|ssur f ace)p(tpos|tsur f ace) (2.34)

must be implemented as a sequence
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1. translate surface forms

2. generate POS tags, given surface forms

The set of mapping steps must have at least one translation step. The first mapping

step must be a translation step which creates an initial set of partial translation op-

tions by consulting its phrase table. To give an example, a two word French phrase

maison blanc maps to several English phrases in the first translation step of the above

factorization:

maison blanc→ { white house, white home, white building }

A partial translation option is created from each English phrase. This is the full extent

of the standard phrase-table procedure, but the factored model goes further.

In the factored model, the initial partial translation options seed the process of

creating translation options. Each subsequent mapping step creates a set of partial

translation options by merging the preceding partial translation options with the results

of its own interrogation of its phrase table or generation table.

A subsequent translation step consults its phrases table to retrieve a set of phrase

pairs. These phrase-pairs are merged with the preceding partial translation options

by calculating the cartesian product of the phrase with the options. The result of a

cartesian product is a set of tuples of a partial translation option and a target phrase. A

new partial translation is formed if the partial translation option and the target phrase

meet the following criteria:

1. The length of target side of the partial translation option and the target phrase

are identical

2. The overlapping factors, if any, are identical

This can be defined formally as a binary function

f (ot1:|ot|
f ot , t1:|t|

f t ) =

{
1 (|ot|= |t|) and (ot1:|ot|

f ot
⋂

f t = t1:|t|
f ot

⋂
f t)

0 otherwise

(2.35)

where ot1:|ot|
f ot is the target side of the partial translation option o with a set of factors

f ot, and t1:|t|
f t is the target phrase with factors f t. The partial translation option and

target phrase are said to be compatible if they meet the above criteria and can be used

to create subsequent partial translation options.

A subsequent generation step consults a factor-for-factor generation table for each

target word in each partial translation option from the the previous mapping step. Each
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factor in the previous partial translation can generate a set of output factors. The Carte-

sian product of the set of output factors creates a set of output strings. Each string is

then merged with the preceding partial translation option. The output string and pre-

ceding partial translation option is also checked for compatibility, as Equation 2.35.

The target phrase length is guaranteed to be identical but the overlapping factors from

the output string and the preceding option must also be identical.

The generation step is extended to allow sets of input and output factors, rather than

a single factor as described above. Figure 2.5 contains the pseudocode for creating

output strings for a particular previous partial translation option by a generation step.

Require: previous translation option, generation step

size← size of target phrase of prev trans op

for i = 1 to size do

find {output factors } from gen step for input factorsi

insert into matrixi← {output factors }
end for

return matrix1 × matrix2...× matrixsize

Figure 2.5: Creating output string for a generation step

In our example, the generation step searches for the POS tags of each English target

word:

white→ { ADJ, VB }
house→ { NN, VB ADJ }

home→ { NN}
building→ { NN, VB}

Merging the POS tags with the preceding partial translation option increases the num-

ber of translation options from three from the preceding mapping step to 12 translation

options.

maison blanc→ {
white|ADJ house|NN, white|ADJ house|VB, white|ADJ house|ADJ,

white|VB house|NN, white|VB house|VB, white|VB house|ADJ,

white|ADJ home|NN, white|VB home|NN,

white|ADJ building|NN, white|ADJ building|VB,

white|VB building|NN, white|VB building|VB }
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This process continues sequentially for every mapping step and returns the last cre-

ated set of translation options to be used in the search stage. The complete pseudocode

for the algorithm to create translation options for each sentence is shown in Figure 2.6.

Require: source phrase sspan, mapping steps

partial translation option set P← {}
for all mapping steps do

partial translation option set P’← {}
if first step then

P’← find phrase-pairs from translation step for sspan

else if translation step then

Φ← find phrase-pairs from translation step for sspan

for all trans opt ∈ P do

for all phrase-pair ∈Φ do

if trans opt and phrase-pair are compatible then

new trans opt← merge trans opt with phrase-pair

insert new trans opt into P’

end if

end for

end for

else if generation step then

for all trans opt ∈ P do

create output strings S’ from trans opt for step {see Figure 2.5 }
for all output string ∈ S′ do

if output string and trans opt is compatible then

new trans opt← merge trans opt with output string

insert new trans opt into P’

end if

end for

end for

end if

prune P’ if necessary

P← P’

end for

return P

Figure 2.6: Creating translation options
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2.3.2 Over-Creation of Factored Translation Options

The creation of factorized translations can have high computational complexity under

some circumstances, both in time and memory requirements. The factored model dif-

fers from the standard phrase-based model in that the table pruning parameters in the

phrase-based model define the maximum number of translation options per contiguous

span. For example, a table pruning limit of 20 entails a maximum of 20 translation

options per span.

However, in the factored model, the table pruning only applies to the table for each

mapping step. The application of a series of mapping steps can produce an explosion

of intermediate partial translation options and consumes large resources.

Given a reasonable table pruning limit of 20 phrase pairs from each translation

step, a factorization of two translation steps can create a maximum of 400 translation

options.

The explosion of translation options is even more pronounced with generation steps

since the output string from the generation steps are themselves created by the Carte-

sian product of sets of factors. For example, with a table limit of 20 for the translation

and generation steps, and a previous translation option with a 3 word target phrase, the

generation step can create a maximum of 20x203 = 160,000 translation options.

For a single preceding partial option with target phrase t, the maximum number of

translation options created by a translation step r with table pruning limit Lr is O(Lr).

For a generation step, the maximum number of translation option created is O(L|t|r ).

Intermediate translation options must be pruned for efficiency but this risks discard-

ing intermediate options that are needed to create good complete translation options.

As with the pruning of incomplete hypotheses, this can adversely affect translation

quality.

2.4 Experiments

We conduct experiments that test the utility of the factored approach and the use of

word-level linguistic information in phrase-based models. We concentrate on German

to English translation, using part-of-speech and lemma factors, in addition to surface

forms. Performance was measured with BLEU (Papineni et al., 2001) and focused

manual evaluation. Only two linguistically motivated factors are compared and con-

trasted but the study is applicable to other factors, such as morphological tags.
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We trained on the New Commentary 2007 corpus data that was released for the

workshop on Statistical Machine Translation1, tuning on an out-of-domain set, test-

ing on in-domain and out of domain. The out-of-domain data was from the Europarl

corpus2. Table 2.1 gives more details on the datasets used.

German English Corpus ID

Train Sentences 52,184 news-commentary

Words 1,105,665 1,070,646

Tune Sentences 2000 dev2006

Test (in-domain) Sentences 1064 nc test2007

Test (out-of-domain) Sentences 2000 devtest2006

Table 2.1: Training, tuning, and test conditions

Word alignment was performed using GIZA++ (Och and Ney, 2003). The training

procedures from the Moses toolkit (Koehn et al., 2007; Hoang and Koehn, 2008) was

used and standard extraction heuristics was used throughout. The Brill Tagger (Brill,

1995) for English, and the LoPar Tagger (Schmidt and Schulte im Walde, 2000) for

German, were used to create part-of-speech and lemma factors.

2.4.1 Source Factors

We used the standard non-factored phrase-based model as the baseline throughout and

added POS tags and lemma source features. The baseline %BLEU score out and in-

domain was 14.55 and 18.23, respectively, Table 2.2, Model (1).

In Model (2), source words were augmented with POS and lemma factors. The

translation model probability becomes:

pT M(t|s) = p(tsur f ace|ssur f ace,slemma,sPOS) (2.36)

The motivation for this model is the belief that ambiguous source surface forms reduces

translation accuracy in non-factored models because they conflate different meanings,

or interpretations. Augmenting the source surface forms with lemma and POS tags dis-

ambiguate homographs, leading to more accurate translation models and overall better

1http://www.statmt.org/wmt07/
2http://www.statmt.org/europarl/

http://www.statmt.org/wmt07/
http://www.statmt.org/europarl/


30 Chapter 2. Factored Translation

Configuration Out-of-domain In-domain

1. Phrase-based baseline 14.55 18.23

2. Source factor model 14.73 (+0.18) 18.78 (+0.55)

Table 2.2: Source factors helps to disambiguate source words

translation performance. Table 2.2 Model (2) shows that this increases performance

out and in-domain by 0.18% and 0.55%, respectively.

The affect of adding source factors were analyzed by observing the characteristics

of the source sentences. The (in-domain) test set of the 1064 German sentences con-

tains 6339 unique surface forms, see Table 2.3. Augmenting source words with lemma

and POS tags increases the number of unique combined tokens by 366 as surface forms

are disambiguated with different lemmas or POS tags.

Table 2.4 shows that the majority of source surface forms only have one interpre-

tation but 27% of tokens in the test set have the same surface form but multiple lemma

or POS tags.

Number of sentences 1,064

Number of surface tokens 26,898

Number of surface types 6,339

Number of combined surface/lemma/POS types 6,705

Table 2.3: Statistics for source language of (in-domain) test set

We examine surface forms with multiple interpretations to find out if augmenting

surface forms with linguistic information aids in disambiguation.

Firstly, we examine the surface word das which has three interpretations: (1) as

an article corresponding to ’the’, (2) as a demonstrative pronoun ’this’ or ’that’, and,

(3) as a relative pronoun ’which’. Each instance of the word and its local context

was compared with the reference and manually evaluated for translation quality. We
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Surface types Unique types %age # occurence in test set %age

1 lemma/POS interpretation 6,002 95% 19,636 73%

2 lemma/POS interpretation 309 5% 3,980 15%

3 lemma/POS interpretation 27 0% 3,213 12%

4 lemma/POS interpretation 1 0% 69 0%

TOTAL 6,339 100% 26,898 100%

Table 2.4: Disambiguation of source test set

see a small improvement in the translation of the demonstrative pronoun and relative

pronoun interpretations of the word, Table 2.5. These two interpretations are rarer in

the test and training corpus than its use as an ’article’. Without the knowledge of the

POS tags and lemma during training, the probability estimates for rare interpretations

are subsumed into the same distribution as other interpretations of the surface word.

The addition of source linguistic factors allows different meanings to be distinguished

and more accurate statistics can be collected for each interpretation, especially for

rare forms. Overall, using source factors has improved the translation of 7 of the 194

occurences of the word das. Examples that were improved are shown below:

baseline: he saw the than the surest way

factored: he saw this as the surest way

reference: he saw it as his surest

baseline: the the use of force

factored: that the use of force

reference: which concerns the use of force

baseline: the justifies some

factored: this justifies some

reference: justifying some

In the second manual evaluation, the German word sein has two interpretations: (1)

as a possessive pronoun ’his’ or ’its’ and, (2) as the infinitive of the verb ’to be’. Each

occurrence was manually evaluated for translation quality and, again, we see that the

addition of source factors improves the translation of rarer forms the most, Table 2.6.

Some of the improvements are due to the special case where the adjacent words are

out-of-vocabulary, restricting the language model from using context to make a better
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article dem. pronoun relative pronoun TOTAL

# occurence in test set 132 33 27 194

Baseline 95 (72%) 17 (49%) 11 (41%) 123 (63%)

Factored 95 (72%) 20 (57%) 15 (56%) 130 (67%)

Table 2.5: Percentage of correct translation of das

lexical choice. But other examples show that source factors help to make better lexical

choice even when the language model has adjacent context. However, we also see that

the poor quality of translating the more frequent verb infinitive interpretation of the

word has not significantly improved. The cause of poor quality for this interpretation

is not poor lexical choice, but inadequate reordering. The German verb, especially if it

is in the infinitive form, usually needs to be reordered from the end of the sentence to

a position before the object noun in English.

baseline: innerpolitischen be rivals

factored: his innerpolitischen rivals

reference: his domestic opponents

baseline: which once be dream seemed to be

factored: that once his dream seemed to be

reference: that once seemed to be his dream

verb infinitive possessive pronoun TOTAL

# occurence in test set 49 14 63

Baseline 15 (31%) 5 (36%) 20 (32%)

Factored 16 (33%) 9 (64%) 25 (40%)

Table 2.6: Manual evaluation of translation of sein

Enriching the source language using factors has been also been taken up by Avramidis

and Koehn (2008) who focus on augmenting nouns and verbs with syntactic informa-

tion in a morphologically poor source language when translating to a morphologically

rich language. Our experiments using POS tags and lemma information is a more

general approach for a morphologically rich-to-poor language pair. Nevertheless, the

disambiguation of source words still leads to a small improvement in translation.
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2.4.2 Generating Target Factors

The aim of the models in this section is two-fold. Firstly, language models are an im-

portant component of the standard phrase-based models that improves output fluency

and grammaticality of SMT system. Using sequence models over factors is an attempt

to generalize language models by modelling sequences of linguistically motivated fac-

tors. Therefore, we would like to know if sequence models over non-surface factors

can benefit translation, and if so, which factors. Secondly, if sequence models over fac-

tors are a useful resource in the factored model, what is the optimal method of creating

target factors?

We test the utility of factorization using the generation step by generating target

factors from the surface form. For ease of comparison, we stick to a decomposition

which factorizes the translation model into a translation of the surface form, followed

by a generation step which models all other target factors given the surface form.

All three factorizations below model the translation of the surface form in a single

step. Each factorization then add target factors using a generation step which condi-

tions on the target surface form created by the translation step.

pT M(t|s) = p(tPOS|tsur f ace)p(tsur f ace|ssur f ace)

pT M(t|s) = p(tlemma|tsur f ace)p(tsur f ace|ssur f ace)

pT M(t|s) = p(tPOS,lemma|tsur f ace)p(tsur f ace|ssur f ace)

Target POS and lemma factors were added using the factorization, above, in Models

(3) to (5) of Table 2.7. The results from these models are compared with experiments

using joint translation models to create the same target factors, Models (6) to (8). For

each model, a trigram sequence model is attached to each target factor, trained on the

target side of the training data.

The results show that sequence models over part-of-speech factors always improve

translation quality, by as much as 0.5% BLEU in one model. However, creating lemma

factors and using them in sequence models can decrease quality.

When comparing the performance of the factorized models (3) to (5) which jointly

model the translation of all factors in one model, we see that the joint model is often

the better choice. This result is also confirmed by Cettolo et al. (2008).

Models (4), which creates lemmas using a generation step, significantly underper-

form the baseline. The model can be reduced to approximately baseline model if the

contribution of the generation and factor sequence models by setting their log-linear

weights to zero.
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Configuration Out-of-domain In-domain

(1) Baseline Non-factored baseline 14.55 18.23

3. Generating POS 14.85 (+0.30) 18.27 (+0.05)

4. Generating lemma 14.01 (-0.54) 17.72 (-0.51)

5. Generating POS & lemma 14.42 (-0.13) 18.39 (+0.16)

6. Translating POS 14.83 (+0.28) 18.71 (+0.48)

7. Translating lemma 14.75 (+0.20) 18.05 (-0.18)

8. Translating POS & lemma 14.73 (+0.18) 18.35 (+0.12)

Table 2.7: Generating target factors

However, when using minimum error rate training (MERT) (Och, 2003), which

optimizes the log-linear weights to maximize BLEU, the weights for the generation

step and factor sequence models are not zeroed out. This suggests that the addition

of unhelpful factors or mapping steps can destabilize the MERT tuning algorithm to
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converge on suboptimal weight settings. We will also see a repeat of this behaviour

in the following sections. Models (5) and (7), which all use lemma factors, also show

some decreased performance.

The better performance of non-factorized models over factorized models can be

explained from the fact that using an non-factorized translation model avoids making

the independence assumptions discussed in Section 2.1.2 and the use of the word-

based generation step. Modelling of target factors conditioned by other target factors,

is pursued in the following sections, as well by other studies such as (Yeniterzi and

Oflazer, 2010). However, as a general-purpose method to create target factors, the use

of generation step is inferior to a translation model which models all factors jointly.

2.4.3 Using Source and Target Factors

We see from Section 2.4.1 that augmenting the source language with POS tags disam-

biguates source surface forms and improves translation. We also see from Section 2.4.2

that translation models that jointly model the target surface and POS tags outperform

models using lemma factors, or factorizing the translation model. A trigram sequence

model on the POS factors was also used.

We combine the two approaches, modelling the translation of both source surface

and POS tags to target source surface and POS tags, as illustrated in Figure 2.7. This

combines the quality of both source and target factors to achieve performance better

than either individually, Table 2.8, Model (9).

Figure 2.7: Joint translation model of surface and POS tags
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Configuration Out-of-domain In-domain

(1) Baseline Non-factored baseline 14.55 18.23

(2) Source factor model p(tsur f ace|ssur f ace,POS,lemma) 14.73 18.78

(6) Translating POS p(tsur f ace,POS|ssur f ace) 14.83 18.71

9. Source & target POS p(tsur f ace,POS|ssur f ace,POS) 15.04 (+0.49) 18.84 (+0.61)

Table 2.8: Translating source and target POS factors

2.4.4 N-Gram Sequence Models on Factors

Target POS and lemma factors were added in Section 2.4.2 in order to use sequence

models on the factors. The conjecture is that sequence models generalize language

models by modelling sequences of less sparsed, linguistically motivated factors derived

from the surface forms. We saw that the use of POS factors improves the overall

translation quality but using lemma often decrease performance. In this section, we

investigate whether the relative sparsity of POS sequence models allows higher n-

grams models to be effectively used.

The translation model of Section 2.4.3 was used as the foundation for the experi-

ments in this section. We then varied the n-gram order of the POS sequence model,

retuning and testing each time. Table 2.9, lines (10) to (14), shows small but consistent

improvements for the in-domain test set with higher sequence model order. However,

tests on out-of-domain data show little increase for sequence models with context over

4-grams and even some decreasing. This indicates that the higher order n-gram model

fails to generalize for out-of-domain test sets.

2.4.5 Reducing Sparsity

A shortcoming of the standard phrase-based model is its poor handling of morphol-

ogy. Each surface word form is treated as a separate token which is parameterized

independently of its morphological variants. Conversely, the standard phrase-based

model conflates parameterization of homographs. Section 2.4.1 described a factored

approach for disambiguating homographs by augmenting surface forms with linguis-

tically motivated factors. However, this approach increases the sparsity of the training

data used to estimate the factored translation model.

Data sparsity can lead to issues with accurate translation. As an example, the News

Commentary 2007 training corpus contain 18,827 examples of 1-word inflections of
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Configuration Out-of-domain In-domain

9 No POS LM 14.71 18.30

10 bigram POS LM 14.85 (+0.14) 18.59 (+0.29)

11 trigram POS LM 15.04 (+0.33) 18.84 (+0.54)

12 4-gram POS LM 15.05 (+0.34) 18.90 (+0.60)

13 5-gram POS LM 14.71 (+0) 18.94 (+0.64)

14 6-gram POS LM 15.02 (+0.32) 19.03 (+0.73)

15 7-gram POS LM 14.90 (+0.19) 19.08 (+0.78)
15 8-gram POS LM 14.84 (+0.13) 18.64 (+0.34)

Table 2.9: POS sequence model

the German word sein (’to be’) unevenly distributed amongst its different inflections,

Table 2.10. Inflections which are often seen in the training data have accurate probabil-

ity estimates but inflections with a small number of examples can often have inaccurate

statistics, as can be seen for the translation of seid (’are’) which is seen twice in the

training data:

p(you are|seid) = 0.5

p(you|seid) = 0.5

Nießen and Ney (2000, 2004) note that 40% of surface forms in their training corpus

appear only once, so inaccurate estimations such as these can be widespread.

In the most extreme case, there is no translation for a surface form, such as for

warst, wart, wärest, wäret in Table 2.10, but ample evidence for other inflections of

the same lemma. In standard SMT models, there is no method which can extrapolate

the translation of the often seen inflection to translate the unseen forms; most models

either drop the unseen word or translate the word ad-verbatim.

This raises the issue of how can we use the knowledge that two words have a

linguistic relationship to improve translation, such as a common lemma or stem. In

the case where the surface form does not exist, how can we use this knowledge to

extrapolate a translation for the surface form?

This question was studied by Nießen and Ney (2000, 2004) who created translation

models for a hierarchy of equivalence classes of the surface form. The most coarse

hierarchy consists of only the lemma, while the finest translation model jointly models

the surface form and all the ’observational tuples’ such as lemma and syntactic tags.
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Word form # example Word form # example

bin 132 bist 4

ist 9791 sind 4370

seid 2 war 2102

warst - waren 886

wart - sei 380

seien 112 seist -

seiet - wäre 809

wärest - wären 239

wäret -

Table 2.10: Number of occurrences of 1-word conjugations of sein

More reliable statistics for word pairs were calculated by interpolating the hierarchy of

translation models, leading to better translation.

In this section, we study the result of factorizing the translation model to reduce

data sparsity of each mapping step, compared to that of a standard phrase-based model.

We hope to improve parameter estimation in this way, resulting in better overall trans-

lation quality. We explore the factored approach model in (Koehn and Hoang, 2007)

which takes as inspiration the analysis-synthesis approach common in rule-based MT

systems such as (Carme Armentano-Oller et al., 2005). This is a shallow-transfer strat-

egy for machine translation which analyses the input sentence into component linguis-

tic properties. Linguistic properties are transferred to the target language, then the final

target word forms are generated from the target linguistic properties. The intuition be-

hind the approach is that by using translation models which separately translate lemma

and POS tags, we take advantage of the reduced sparsity to improve the reliability of

the translation model and increase translation quality.

Transforming surface forms to lemma reduces the number of unique types in the

training data by 30% on the German side and 20% on the English side, Table 2.11.

Part-of-speech tags and morphological information for the German source words are

also created.

Koehn and Hoang (2007) reported that the model performs poorly when used on

its own, but using the analysis-synthesis model in addition to a standard phrase-based

translation model, positive results were achieved. We experiment with similar decom-

positions to seek an explanation for this. Again, we use the standard phrase-based
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German English

Surface forms 68,069 37,254

Lemma 48,149 29,658

POS 54 45

Table 2.11: Number of unique tokens

model as the baseline, Table 2.12, Model (1). A trigram language model was used

throughout, sequence models were not used on other factors.

Model Out-of-domain In-domain

1 Baseline (non-factored) 14.6 18.2

2 13.5 (-1.1) 17.3 (-0.9)

3 8.8 (-5.8) 11.3 (-6.9)

4 Model (3), using weights from (2) 13.5 (-1.1) 17.3 (-0.9)

5 13.8 (-0.8) 17.4 (-0.8)

Table 2.12: Decoding with decomposed model

Model (2) reduces the sparsity of the translation model by translating a less sparse

factor, followed by a word-by-word generation step. However, this causes a decrease

in BLEU but is still surprisingly good, considering the translation model decodes with-

out the benefit of source linguistic information, either implied in the surface form or

separated as a factor.
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In Model (3), a limited amount of linguistic information is added back to the trans-

lation model by independently translating the POS and subsequently utilized by the

generation step to model the surface form. However, rather than improving perfor-

mance, it significantly worsens, caused by the interaction of the two translation steps

which destabilizes the tuning procedure.

In experiment (4), the contribution of the POS translation step is ignored by zeroing

out its feature function weights and reusing the tuning parameters from Model (2).

Resulting in identical performance to that model.

In Model (5), we achieve better performance by jointly translating the same factors

with only one translation step and using the same generation step. This achieved the

best performance of of all the models which reduces data sparsity. However, the results

are still not able to match those of the standard phrase-based baseline.

2.4.6 Intermediate Translation Option Pruning

A reason for the poor performance of Model (3) is the method for creating factored

translation options. Translation options are created by applying the series of mapping

steps in sequence where the mapping steps must be arranged so that the factors for a

mapping step have been created by the set of previous steps. In Model (3), the order of

mapping steps is

1. Translate source to target lemma

2. Translate source to target POS tags

3. Generate target surface form from target lemma and POS tags

Recall from Section 2.3 that the creation of partial translation options involve Cartesian

products which can multiply the number of partial translation options.

For example, the two translation steps in Model (3) do not have overlapping fac-

tors, many translation options are created, constrained only by the compatibility check

on the phrase length. The subsequent application of the generation step intersects the

output of both translation steps and drastically cuts down on the number of transla-

tion options. This is due to most of the partial translation options not satisfying the

constraint of Equation 2.35 on overlapping target factors. Table 2.13 shows the mag-

nitude of the problem. The problem is worse for short phrases where the number of

intermediate translation options multiplies to 250 times the number of options from a

standard phrase-based translation model, before being reduced to less than 5 times that

of a single translation model.
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Decode Step

# source word covered Translate lemma Translate POS Generate

1 118,466 33,077,154 (×279) 445,255 (×3.8)

2 15,169 4,087,423 (×269) 66,542 (×4.4)

3 3,820 439,395 (×115) 11,289 (×3.0)

4 467 37,107 (×79) 1,338 (×2.9)

5 39 288 (×7) 69 (×1.8)

6 3 3 (×1) 3 (×1)

7 1 1 (×1) 1 (×1)

Table 2.13: Number of partial translation options for 100 input sentences

To cap memory usage, we use a pruning strategy that occurs after each mapping

step during translation option creation. However, this is a risky pruning strategy which

may discard partial translation options needed to created good completed translation

options. Figure 2.8 gives the pseudocode for the better translation option algorithm

which reduces the intermediate translation option bloat and the resulting excessive

memory usage and pruning.

The algorithm still forms a cartesian product of the two translation steps but it

processes each item in the first translation step individually rather than as a whole,

containing the intermediate translation option explosion to a single entry in the first

translation step. The each partial translation option from the first mapping step, in

line 3 & 4, is processed to created completed translation options before another partial

option is processed. Also, if pruning is required then it is done on the set of completed

translation options. Therefore, there is no risk of discarding partial translation options

required to create good completed options, as occurred in the original algorithm of

Figure 2.6.

Replacing the translation option creation algorithm with this algorithm results in

BLEU scores of 9.94% out-of-domain (12.5% in domain), above comparable results

of Table 2.12 Model (3), but still well below simpler decomposition of Model (5), as

well as the phrase-based baseline of Model (1).



42 Chapter 2. Factored Translation

Require: source phrase sspan, mapping steps

1: 1st translation options P← {}
2: final translation options Q← {}
3: P← find phrase-pairs from 1st translation step for sspan

4: for all 1st-trans-opt ∈ P do
5: old translation options R← {}
6: insert 1st-trans-opt into R

7: for all mapping steps - 1st translation step do
8: new translation options S← {}
9: if translation step then

10: Φ←find phrase-pairs from translation step for sspan

11: for all old-trans-opt ∈ R do
12: for all phrase-pair ∈Φ do
13: if old-trans-opt and phrase-pair are compatible then
14: new-trans-opt← merge old-trans opt with phrase-pair

15: insert new-trans-opt into S

16: end if
17: end for
18: end for
19: else if generation step then
20: for all old-trans-opt ∈ R do
21: Φ← create output strings from old-trans-opt for step

22: for all output-string ∈Φ do
23: if output-string and old-trans opt are compatible then
24: new-trans-opt← merge old-trans-opt with output-string

25: insert new-trans-opt into S

26: end if
27: end for
28: end for
29: end if
30: R← S

31: end for
32: Q← R

33: prune Q if necessary

34: end for
35: return Q

Figure 2.8: Creating translation options 2
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2.4.7 Out-of-Vocabulary Words

The decomposition of the translation model to less sparse mapping steps of the last

section does not outperform a non-decomposed translation model which models all

factors in one translation step. However, the reduction in sparsity can map lemmas

of surface forms not seen in the training corpora. This makes it possible to gather at

least some statistics of out-of-vocabulary words from their linguistic relationship with

other words in the training corpus. We saw in the previous section that decomposing

to less sparse features reduces performance in general but using it only for out-of-

vocabulary words can help improve overall translation. This is the approach described

in (Koehn and Hoang, 2007), its utility is diminished for low morphological languages

and as more parallel data is available for a language pair and out-of-vocabulary (OOV)

word becomes rarer. However, if lemmatization or stemming tools are available, this

approach offers a convenient, fallback solution to dealing with this particular data spar-

sity problem of OOV words.

We repeat their experiment to analyze more indepth how the approach affects pro-

cessing of OOV words. Once again, the baseline is the non-factored model of Ta-

ble 2.12, Model (1). Both the baseline translation model and the decomposed lemma

translation of Model (2) are used during decoding. However, the two phrase tables are

not translation steps in one translation model but alternative translation models. During

decoding, translation options from either model can be used for hypothesis expansion.

Each model is weighted separately during tuning. Using this approach, we obtain a

0.7% BLEU gain over the baseline for in-domain translation but out-of-domain results

are imperceptible, Table 2.14, Model (6).

Model Out-of-domain In-domain

(1) Baseline (non-factored) 14.6 18.2

6 Baseline + Model (2) 14.7 (+0.1) 19.1 (+0.9)

Table 2.14: Decoding with decomposed model and phrase-based model

The analysis of the test sets, Table 2.15 and 2.16, shows that by using the com-

bination of both translation models, OOV rate was reduced by over 1% (20% relative

reduction), in both in and out-of-domain, the majority of which are nouns and adjec-

tives.

The first 100 OOV words in the in-domain and out-of-domain test sets were manu-
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Baseline Baseline + Decomposed Model Reduction

nn 2021 1815 -7%

adj 452 228 -7%

vvfin 126 21 -3%

vvinf 58 28 -1%

vvpp 57 19 -1%

vvizu 20 4 -1%

TOTAL OOV 3048 (5.62%) 2424 (4.47%) -20%

Table 2.15: Number and rate of OOV words (Out-of-domain)

Baseline Baseline + Decomposed Model Reduction

nn 813 742 -5%

adj 280 153 -9%

vvfin 72 16 -4%

vvpp 35 19 -1%

vvinf 33 14 -1%

TOTAL OOV 1354 (5.03%) 1054 (3.92%) -22%

Table 2.16: # and rate of OOV words (In-domain)

Out-of-Domain In-Domain

Not translated 70% 68%

Incorrectly translated 25% 25%

Correctly translated 5% 7%

Table 2.17: Manual Evaluation of 100 OOV words

ally evaluated to see whether the factorized translation model helps. From Table 2.17,

we see that 5% (out-of-domain, 7% in-domain) of words are correctly translated, while

the majority of OOV words remain untranslated or are translated incorrectly.
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2.5 Large Training Corpora

It is informative to compare the relative performance of the factored translation model

when trained with more data. We therefore used the Europarl3 corpora to train larger

models for a German-English system. The training corpus contain 1,540,549 parallel

sentences but once cleaned this was reduced by about 2% . We used in-domain, hold-

out data for MERT tuning and tested on in and out-of-domain test sets. Table 2.18

gives more details on the datasets used.

German English Corpus ID

Train Sentences 1,509,017 Europarl v5

Words 38,919,074 41,103,428

Tune Sentences 2000 dev2006

Test (out-of-domain) Sentences 1057 nc test2007 v2

Test (in-domain) Sentences 2000 devtest2006

Table 2.18: Training, tuning, and test conditions

The translation models was trained on the parallel data described above, using

standard phrase-based heuristics as implemented in the Moses toolkit. One difference

is the use of Good-Turing frequency estimate for phrase probability calculation (Foster

et al., 2006), whereas previous sections used the maximum likelihood estimates.

A trigram language model was trained on the 1,843,035 sentence of the target side

of the corpus which also contains non-parallel sentences. POS sequence models were

also created using tagged sequences of the same data. No lexicalized reordering mod-

els (Tillmann, 2004) were used.

As with the experiments in the previous sections, we use as a baseline a non-

factored model. We use the most promising factored translation model from the last

sections which jointly translate source POS and surface forms to their target-language

counterparts. The POS tags for each language were produced by the same tools as

the previous sections, namely the Brill Tagger for English and the LoPar Tagger for

German.

As can be seen from Table 2.19, the availability of more training data has dimin-

ished the utility of better parameterization through linguistic information. The factored

model with low-order sequence models shows worse performance than the baseline,
3http://www.statmt.org/europarl/

http://www.statmt.org/europarl/
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but nevertheless, there is a small but consistent increase over the standard phrase-based

baseline for the in-domain test set for higher order sequence models. This is consis-

tent with the results we found with smaller training where we saw small gains when

translating out-of-domain, and bigger gains with in-domain.

Configuration Out-of-domain In-domain

1 Non-factored baseline 21.04 26.39

Factored model

2 No POS LM 20.65 (-0.39) 26.22 (-0.17)

3 trigram POS LM 20.57 (-0.47) 26.40 (+0.01)

4 4-gram POS LM 20.77 (-0.27) 26.34 (-0.05)

5 5-gram POS LM 20.81 (-0.23) 26.53 (+0.14)

6 6-gram POS LM 21.26 (+0.22) 26.57 (+0.18)

7 7-gram POS LM 20.97 (-0.07) 26.60 (+0.21)

8 8-gram POS LM 21.00 (-0.04) 26.63 (+0.24)
9 9-gram POS LM 20.89 (-0.15) 26.63 (+0.24)

Table 2.19: Results when trained with Europarl corpus

2.6 Conclusion

From the experiments described in this chapter, we see that the following characteris-

tics have helped improved translation quality:

1. ability to use source factors to disambiguate source words,

2. multiple language models, with longer n-gram order over non-surface factors,

3. ability to translate unknown words by backing off to lemma and part-of-speech

tags.

We used two factors with different characteristics. Firstly, POS tags were used

as factors for their syntactic analysis and because the small number of POS tags for

each language reduces the data sparsity of models based on them. Morphological or

semantic tags may also have similar ideal properties when used as factors. We also

used lemma factors. While the determination of lemmas from surface form may be

non-trivial, we do not believe they produce complementary information to the surface
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form to be useful for decoding. The relative usefulness of the two factors is borne out

by experimental results.

The results also show the limitation of factoring the translation model into multiple

translation and generation steps. Factorization is helpful only to increase the translation

coverage of unknown words but in most situations a translation which jointly decodes

all factors is superior.
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Factored Template Model

Phrase-based translation can accurately translate words or small contiguous phrases

by memorizing parts of the training data. We have also shown that adding linguis-

tically motivated factors can improve translation by disambiguating source words or

improving grammaticality by using high-order n-gram models over linguistic factors.

A major problem with SMT is reordering. In phrase-based SMT, the driver for

reordering is the language model feature function which prefers fluent word order. The

language model is a powerful and convenient model which can be created from cheap

monolingual corpora. However, relying on the language model to dictate reordering

is problematic since it reorders the output to resemble fragments of the training data

without consideration of the input sentence. Neither can a language model based on

surface forms generalize to words or phrases it has not seen, which is an especially

important issue for highly inflected target languages.

Clear reordering patterns emerge from a POS-tagged corpus which can be used as

a basis for improving reordering. For instance, the French-English News Commentary

corpus1 finds over 7000 instances of the source language NOUN ADJECTIVE phrase.

The alignment data strongly suggest that this 2-word phrase translates to ADJECTIVE

NOUN, i.e, it overwhelmingly suggests to swap the order of the two words (Table

3.1). Strong reordering patterns can also be seen in Table 3.2 for the longer POS tag

sequence

NOM ADJ KON ADJ

In this chapter, we directly tackle short-range reordering in the phrase-based model

by presenting an extension of the factored translation which makes use of the strong

1http://www.statmt.org/wmt07/shared-task.html
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Source Target Alignment # examples %

nom adj jj nn 1-0 0-1 6704 29%

nom adj jj nns 1-0 0-1 3244 14%

nom adj nnp nnp 1-0 0-1 814 3%

nom adj nn nn 1-0 0-1 558 2%

nom adj nn 0-0 1-0 556 2%

nom adj jj 1-0 483 2%

nom adj nnp nn 1-0 0-1 376 2%

nom adj nns 0-0 0-1 361 2%

Phrase pairs with less than 2% 10,198 44%

TOTAL 23,294 100%

Table 3.1: French–English translation of nom adj

Source Target Alignment # examples %

nom adj kon adj jj cc jj nns 1-0 2-1 3-2 0-3 103 15%

nom adj kon adj jj cc jj nn 1-0 2-1 3-2 0-3 98 14%

nom adj kon adj jj cc jj 1-0 2-1 3-2 21 3%

nom adj kon adj jj cc jj nns 3-0 2-1 1-2 0-3 18 3%

nom adj kon adj jj cc jj nn 3-0 2-1 1-2 0-3 17 2%

Phrase pairs with less than 2% 435 63%

TOTAL 692 100%

Table 3.2: French–English translation of nom adj kon adj
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ordering patterns of non-surface factors such as POS tags. We show that the proposed

model outperforms the lexicalized reordering model (Tillmann, 2004) which is also

focused on improving reordering in phrase-based models. In fact, the proposed model

can completely replace the linguistically unmotivated distance-based reordering model

and lead to overall better sentence translation.

In our tests, we obtained 1.0 increase in absolute BLEU for French-English trans-

lation, and 0.7 BLEU increase for German-English translation with the News Com-

mentary corpora 2.

3.1 Reordering in Phrase-Based Models

The phrase-based translation model carries out certain types of reordering adequately,

outperforming more complex models such as the hierarchical phrase model when most

of the reorderings in a particular language pair are reasonably short (Birch et al., 2009).

Phrase-based models implicitly perform short-range reordering by memorizing multi-

word phrase-pairs. However, this is not always possible when the phrase-pair does not

exist in the training corpora. This issue is especially acute for small parallel corpora,

highly inflectional languages, or out-of-domain test sets. In such cases, the phrase-

based model resort to other models to inform reordering.

The simplest, distance-based reordering model (Brown et al., 1993) is based on

the implicit assumption that most translations do not involve reordering, penalizing

hypotheses that do reorder phrases. The penalty is proportional to the amount of non-

monotonicity. For closely related languages such as English or Romance languages,

the assumption of monotonicity is generally correct, hence the good performance of

short-range reordering in phrase-based models compared to more complicated models.

However, the distance-based model is unlexicalized and not learnt from data, the

same penalty applies regardless of the phrase being reordered. This ignores the fact

that some words or phrases are more likely to be reordered than others. For example,

adjectives in French are usually moved before the noun in a French-English translation:

chat noir→ black cat

The reordering penalty is offset by the potential increase in the n-gram language model

probability (Manning and Schütze, 1999). Therefore, the language model has a signif-

icant effect on reordering by preferring hypotheses which are more fluent. However,

2 http://www.statmt.org/wmt07/shared-task.html

http://www.statmt.org/wmt07/shared-task.html
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the language model is ill-equipped to model re-ordering as it has no information of the

source sentence, or what constitutes good re-ordering. Therefore, using it to guide re-

ordering conflates the separate objectives of improving fluency and correct reordering,

risking an unsatisfactory solution for both objectives.

Another issue with using language models is data sparsity, even when trained on

a large amount of data. This is especially true with highly inflection languages as

lexical types are modelled separately. Data sparsity prevents the creation of high-order

models so limiting the context window. Out-of-domain test data and rare words hinders

the usefulness of language models further.

Lexicalized reordering (Tillmann, 2004) introduces a probability distribution for

each phrase-pair that indicates the likelihood of being translated monotone, swapped,

or placed discontinuous to its adjacent phrase. However, whether a phrase is reordered

also depends on its neighbouring phrases, which the lexicalized reordering model does

not take into account. For example, the French phrase noir would be reordered if

preceded by a noun when translating into English, as in as in chat noir, but would

remain in the same relative position when preceded by a conjunction such as rouge et

noir.

The lexicalized reordering model also has similar problems to language models

in that it does not generalize the lexicalized phrases with less sparse features and is,

therefore, similarly prone to data sparsity issues.

3.1.1 POS-Based Reordering

The phrase-based approach of memorizing phrase-pairs works well for phrase-pairs it

has seen in the training data. For example, the following (French) source phrase is

correctly reordered because its translation occurs often in training:

Union Européenne→ European Union

However, phrase-based models may not reorder even small two-word phrases if the

source phrase is not in the training data. This situation worsens for longer phrases

where the likelihood of the source phrase being previously seen is lower.

Although the surface string may not have occurred during training, the underlying

POS tag sequence may have occurred many times. For example, if the surface string

difficultés économiques et socials
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does not occur in the training corpus, a phrase-based model will often incorrectly trans-

late it by monotonically concatenating the translation of its words or subphrases:

difficulties economic and social

However, the training data may contain many similar phrases with the same underly-

ing POS tags. The correct translation of the underlying POS tags of the source phrase

can be extracted from the training data because it has been observed many times. Fur-

thermore, the alignment information in the training corpus shows exactly how the in-

dividual words in this phrase should be ordered. The POS-based phrase-pair is shown

below, with alignment information denoted by co-indexes:

NOUN1 ADJ2 CONJ3 ADJ4→ ADJ2 CONJ3 ADJ4 NOUN1

The challenge addressed later on in this chapter is the use of part-of-speech phrase-

pairs such as the one above in a phrase-based model to improve reordering.

The use of word-class ‘phrases’ and alignment information to inform reordering

has precedent in early phrase-based models. The alignment template model (ATS) (Och

and Ney, 2004) uses phrase-pairs composed of automatically learnt word classes for

intraphrase reordering of lexical translations. A phrase-pair, called alignment template,

is a triple (FJ′
1 ,EJ′

1 , Ã) that describes the alignment Ã between a source class sequence

FJ′ and a target class EJ′ . The alignment guides the ordering of words within each

template.

Tomas and Casacuberta (2003) extends the alignment template model by replacing

automatic word classes on the source side with POS tags. In this model, a template is

a tuple (F,R) where F is a sequence of source POS tags and R is a set of indexes

which describes the ordering of each word position in F . The surface string translation

continues to be a word-for-word correspondence.

Liberato et al. (2010) recast the use of POS templates as phrase prototypes in a

phrase-based model. Prototypes are composed of source and target POS tags, transla-

tion rules based on prototypes are created by using a word-to-word dictionary to fill the

surface string translation, based on the ordering dictated by the prototype. However, it

differs from Tomas and Casacuberta (2003) in that the translation rules are created in

isolation, rather than during decoding.

In all of the above research, the surface string is created with a word-to-word

model, using a template to inform word ordering. Unaligned target positions in the

templates that cannot be filled using the word-to-word model are often modelled with
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surface forms in the template. For example, a possible template would be the following

translation rule with an unaligned surface form de

NN1 NN2→ NN2 de NN1

Later phrase-based models such as Pharaoh (Koehn, 2004) and Moses (Koehn

et al., 2007) combine templates and word translations to create phrasal translation

rules. Word-class and alignment information in the translation rules are no longer

needed during decoding and dispensed with for standard phrase-based decoding.

3.2 Translation Using Templates of Factors

A major motivation for the factored approach to machine translation is to use less

sparse linguistic factors such as POS tags to generalize models. For example, we saw

in Section 2.4.4 that the n-gram order of sequence models over different factors can be

adjusted to take advantage of the relative sparsity of the factor. Higher n-gram orders

are possible for sequence models of POS tags than of surface strings, leading to better

target side grammaticality and translation.

Similarly, we would like to generalize the translation model with factors such as

POS tags. Using the translation model factorization described in Section 2.4.5 we can

decompose the translation model into multiple translation steps based on factors with

differing sparsity. Long phrase-pairs can be extracted for translation steps based on

less sparsed factors such as POS tags, while shorter phrase-pairs can be extracted on

sparse factors such as surface strings.

For decoding, however, the factored model is formulated to constrain every transla-

tion step to identically segment the source and target phrase during decoding. This can

be seen in Equation 2.18 in the previous chapter, which we reproduce below. (From

hereon in, we will ignore generation steps γ as it is not relevant to future discussions).

pT M(t|s) = ∏
r∈τ

p(tout(r)|sin(r))×∏
g∈γ

p(tout(g)|tin(g))

∏
r∈τ

p(tout(r)|sin(r)) = ∏
r∈τ

∏
b∈d

pT M(tb
out(r)|s

b
in(tr))

(γ = /0)

The translation model probability is the product of each translation step r ∈ τ. In turn,

the probability of each translation step is the product of a set of phrase-pair probabil-

ities pT M(tb
out(r)|s

b
in(tr)). Recall b = (starts,ends,startt ,endt) is a coupled source and
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target span. d = {b∗} is a set of b which covers all words in the source and target

sentence once and only once. For the factored translation model, d is identical for all

translation steps.

Within the log-linear formulation of SMT, the parameters of the translation steps

included are feature functions in the log-linear model of Equation 3.1. Again, we

invoke the maximum derivation approximation.

argmax
t

p(t|s) ≈ argmax
t

h(t,s,d) (3.1)

h(t,s,d) = ∑
r∈τ

λr ∑
b∈d

hr(tb
out(r),s

b
in(r))+ ∑

m′ /∈τ

λm′hm′(t,s,d)

hr(tb
out(r),s

b
in(r)) is the feature function of translation step r for a phrase-pair spanning

[starts,ends] on the source side and [startt ,endt ] on the target. λr is weighting of trans-

lation model r. hm′(t,s,d) and λm′ are the same for all other feature functions. The

feature functions for translation steps are their log probabilities:

hr(tb
out(r),s

b
in(r)) = log p(tb

out(r)|s
b
in(r)) (3.2)

Simply speaking, every translation option contains exactly one phrase-pair from

each translation step, which must be of the same source and target length. This simpli-

fies the construction of translation options so that they can continue to be constructed

as a preprocessing step prior to decoding, making the decoding algorithm identical

to a standard non-factored algorithm. However, this constraint, which we term the

synchronous constraint, prohibits decoding with short phrase-pairs of sparse factors

together with long phrase-pairs of less sparse factors such as POS tags.

In this chapter, we present the factored template model which relaxes the syn-

chronous constraint so that translation steps do not need to identically segment the

source and target phrase. We will focus on factorizing the translation model into two

translation steps. The first step models POS tags. The second translation step jointly

models the POS tags and surface form.

For example, in translating the following phrase that has been pre-tagged with part-

of-speech information.[
difficultés

NOUN

][
économiques

ADJ

][
et

CONJ

][
socials

ADJ

]

We would like the ability to use long POS phrase-pairs such as:

NOUN1 ADJ2 CONJ3 ADJ4→ ADJ2 CONJ3 ADJ4 NOUN1
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in conjunction with several phrase-pairs that jointly translate surface and POS tags:[
difficultés

NOUN

]
1

→

[
difficulties

NOUN

]
1

[
économiques

ADJ

]
1

[
et

CONJ

]
2

[
socials

ADJ

]
3

→

[
economic

ADJ

]
1

[
and

CONJ

]
2

[
social

ADJ

]
3

3.2.1 Factored Template Model

The factored template model is a factored phrase-based model where the translation

model is decomposed into two translation steps:

1. translate POS tags

2. jointly translate POS tags and surface forms

The first translation step can be viewed as the template which guides reordering of

phrase-pairs from the second step. Equation 3.3 is the decomposition of the translation

model probability in the standard factored model.

pT M(t|s) = p(tsur f ace,POS|ssur f ace,POS) (3.3)

= p(tsur f ace,POS|ssur f ace,POS)
λ p(tsur f ace,POS|ssur f ace,POS)

1−λ

≈ p(tsur f ace,POS|ssur f ace,POS)
λ p(tPOS|sPOS)

1−λ

This formulation approximates the joint translation model with a translation model on

the POS tags. It then interpolates both models to arrive at the translation probability,

pT M(t|s).
A phrase-pair for a translation step r in the factored template model is defined as

a triple (sb
in(r), t

b
out(r),Ω

b
r ) where sb

in(r) and tb
out(r) are a sequence of words in the source

and target, respectively, and Ωb
r is the alignment information which is retained from the

phrase extraction stage. The structure of the alignment information will be described

shortly. This definition of phrase-pair is identical to the templates of (Och and Ney,

2004). However, whereas (Och and Ney, 2004) uses word-based translation for surface

forms, the factored template model uses phrase-pairs for both templates and surface

form translation.

Therefore, the feature function in Equation 3.2 is expanded to include the alignment

information:

hr(tb
out(r),s

b
in(r),Ω

b
r ) = log p(tb

out(r),Ω
b
r |sb

in(r)) (3.4)
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The factored template model relaxes the constraint of Equation 3.1 so the segmen-

tation used by step 1 and 2 are not required to be identical.

t̂ = argmax
t

h(t,s) (3.5)

≈ arg max
t,d1,d2

h(t,s,d1,d2) (3.6)

h(t,s,d1,d2) = λ1h1(tout(1),sin(1),Ω1,d1)+λ2h2(tout(2),sin(2),Ω2,d2)

+ ∑
m′ /∈{1,2}

λm′hm′(t,s,d1,d2)

= ∑
b1∈d1

λ1h1(t
b1
out(1),s

b1
in(1),Ω

b1
1 )+ ∑

b2∈d2

λ2h2(t
b2
out(2),s

b2
in(2),Ω

b2
2 )

+ ∑
m′ /∈{1,2}

λm′hm′(t,s,d1,d2)

where d1 and d2 are the segmentation for translation step 1 and 2, respectively. Ωr and

Ωb
r are alignment information which will be defined shortly.

Again, we invoke the maximum derivation principle to approximate the maximum

translation during optimization.

3.2.2 Constraints

The two translation steps in the factored template model are subject to three constraints.

Firstly, the segmentation of each translation step are no longer identical but they

are not independent. Phrase-pairs from the first translation step must wholly contain a

number of phrase-pairs of the second step. No phrase-pairs from the second translation

step can straddle two or more phrase-pairs from the first. Formally:

Template Constraint

∀b2 = (start2
s ,end2

s ,start2
t ,end2

t ) (3.7)

∃b1 = (start1
s ,end1

s ,start1
t ,end1

t )

such that start1
s 6 start2

s ,end1
s > end2

s ,

start1
t 6 start2

t ,end1
t > end2

t

where b1 ∈ d1,b2 ∈ d2

Note the definition of the coupled span br = (startr
s ,endr

s ,startr
t ,endr

t ) for a translation

step has been expanded from the standard factored model of Equation 3.1 to clearly

distinguish the segmentation of each translation step.

Secondly, reordering of phrase-pairs from the second translation step within the

first translation step is constrained by the word alignment which is formally defined
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now. An alignment (i, j) is a relationship which maps a position i in a phrase in the

source language to a position j in its translation. For a phrase-pair or aligned sentence

of source and target sentence s and t, respectively, the set of alignments Ω is defined as

Ω = {(i, j) | 1 6 i 6 |s|,1 6 j 6 |t|} (3.8)

Note that i and j are defined as indices over the entire input sentence s and t, not over

the phrase pair.

The alignment can be visualised as a matrix of binary values. For example, the

alignment set {(1,2)(3,1)} for a 3-word source and 2-word target sentence can be

visualized as Figure 3.1.

Figure 3.1: Example alignment matrix for 3-word source, 2-word target sentence

Ωr are the alignments when s is translated to t by a translation step r.

The alignment constraint for the factored template model allow only translations

where the intersection of the alignment set for each translation step, Ω1 and Ω2 meet

the following criteria:

Alignment Constraint

Ω = Ω1∩Ω2 (3.9)

∃(i,•) ∈Ω ∀1 6 i 6 |s|

∃(•, j) ∈Ω ∀1 6 j 6 |t|

Simply speaking, both translation steps must agree on at least one alignment for every

position in the source and target phrase.

The alignment information Ωb
r of each phrase pair (sb

in(r), t
b
out(r),Ω

b
r ) are similarly

defined as in Equation 3.8. Positions which remain unaligned are artificially aligned

to every position in the other language for all phrase-pairs. This ensure that unaligned

positions can be translated by both translation steps.
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Ωr is created by merging all Ωb
r from the phrase-pairs in r used to translate s to t.

Ωr =
⋃

Ω
b
r , ∀ b ∈ dr (3.10)

Note that the alignment information in each phrase-pair is also defined relative to the

entire source and target sentence.

Ω
b
r = {(i, j) | starts 6 i 6 ends,startt 6 j 6 endt} (3.11)

where b = (starts,ends,startt ,endt). However, the alignment information is estimated

relative to each phrase-pair and shifted relative to s and t during decoding.

The third constraint inherits from the factored approach of overlapping target fac-

tors formalized in Equation 2.35. The two translation steps in the factored template

model both emit POS tags in the target language. Hypotheses can only be formed if

the POS tags emitted by each translation step are identical for all target positions. As

with Equation 2.35, this can be formalized as a binary function:

f (tb1
out(1), t

b2
out(2)) =

{
1 (tb2

out(1) = tb2
out(2)

⋂
{POS})

0 otherwise
(3.12)

3.2.3 Example of Constraints

We show an example of the construction of a template phrase-pair and the alignment

consistency check below.

Table 3.3 shows phrase-pairs from the first and second translation steps of a fac-

tored template model.

The first translation step contains only one phrase-pair, therefore, its alignment

information comes directly from the phrase-pair. However, the phrase-pair contains

only two alignment points, (1,2) and (3,1), shown in solid lines; the second source

word is unaligned and is therefore artificially aligned to both positions in the target

(dashed lines). Therefore,

Ω1 = {(1,2)(3,1)(2,1)(2,2)}

Similarly, the first phrase-pair in translation step 2 also has an unaligned word

which is artificially aligned to the target. The alignment information for the second

translation step, Ω2, is calculated by taking the union of the alignment of all its phrase-
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Translation step 1

Ω
′
1 = {(1,2)(3,1)(2,1)(2,2)}

Translation step 2

Ω
′′
2 = {(1,2)(2,2)} Ω

′′′
2 = {(3,1)}

Table 3.3: Example phrase-pairs with alignment information

pairs.

Ω2 = Ω
′′
2∪Ω

′′′
2

= {(1,2)(2,2)}∪{(3,1)}

= {(1,2)(2,2)(3,1)}

The intersection of the alignments from both translation steps, Ω, contains an align-

ment for every source and target position.

Ω = Ω1∩Ω2

= {(1,2)(2,2)(3,1)}

Therefore, the combined phrase-pair created by merging all three phrase-pairs is valid

as it satisfy the alignment constraint. The alignments from the combined phrase-pair

is pictured in Figure 3.2.

Notice that the surface forms translated by the second translation step have been

reordered. Also, the surface form ‘de’ in the source sentence is translated by a phrase-

pair which also translates an adjacent word. This is possible as the unaligned word is



3.3. Decoding 61

Figure 3.2: Combined phrase-pair

artificially aligned to all words in the phrase pair, thereby allowing them to be trans-

lated by adjacent phrases.

3.3 Decoding

In phrase-based decoding, a translation option strictly contains one phrase pair. The

factored model described in Chapter 2 allows the the translation model to be decom-

posed into multiple translation and generation steps. However, each step in the fac-

tored model does not decode independently, but is limited by constraints discussed in

the previous chapter. These include a constraint that all translation steps identically

segment the translation.

The constraint allows the factored decomposition to be implemented as a prepro-

cessing step of decoding, before the search process. Specifically, the construction

of translation options is extended from the standard phrase-based model by using a

phrase-pair from each translation step, and one generation-pair for each target word, to

create a translation option. Once the translation options are created, the search process

can proceed unchanged from standard phrase-based decoding.

Translation options are the intermediate representation between phrase-pairs and

generation-pairs, and the hypotheses in the stack decoder. Translation options relate

to a specific source span of a sentence and are applied to hypotheses to create new

hypotheses.

Extending the creation of translation options while keeping the search process un-

changed is also the approach that was followed for the factored template model. Each

translation option is created from a single phrase-pair from the first translation step

and multiple phrase-pairs from a second translation step. Therefore, the construction
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of translation options is the core implementation of the factored template model and

which we will describe below.

3.3.1 Creating Translation Options

A set of translation options is created for every continuous source span. The creation

of translation options for each span is independent of other source spans.

The creation of translation options for a continuous source span is modelled as a

search process similar to a phrase-based model. Formally, for every source subphrase,

s, the model searches for the best translation t̂, subject to the constraints described pre-

viously. Translation options are composed of one phrase-pair, (s1, t1,Ω1), from the first

translation step and multiple phrase-pairs, (sb2 , tb2
2 ,Ωb2

2 ), from the second translation

step.

t̂ = argmax
t

h(s, t) (3.13)

≈ argmax
t,d2

h(s, t,d2)

≈ argmax
t1,d2

{
λ1h1(s1, t1)+λ2h2(s2, t2)+ ∑

m/∈{1,2}
λmhm(s, t)

}

≈ arg max
t1,b2∈d2

{
λ1h1(s1, t1)+

λ2 ∑
b2∈d2

h2(s
b2
2 , tb2

2 )+ ∑
m/∈{1,2}

λmhm(s, t)

}

where d2 is the set of source and target spans, b2 ∈ d2, which covers every word in the

source and target position, s and t, respectively, once and only once.

The search process is extended to search for the best set of translation options in

the same way as the search for n-best translations in a phrase-based model.

The search is implemented as a simplified phrase-based decoder which concate-

nates phrase-pairs from the second translation step. This intra-phrase decoder simpli-

fies a standard phrase-based decoder in a number of ways.

Firstly, partial translation options are evaluated using only local features, non-local

features are evaluated only once completed translation options are formed. This en-

ables fast decoding at the expense of search errors due to stack pruning. Pruning

parameters are set wide to minimize any pruning but prevent excessive resource usage.

Secondly, phrase-pairs from the second translation step that are reordered within a

template do not incur distortion cost. No distortion limits are set for reordering within
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a template. The only constraints are those described in Section 3.2.2.

Once all source words are covered, all target words in the template must have

also been covered. A translation option is said to be completed when all source and

target positions of the template have been covered. Translation options which have not

covered all target words in the template are discarded.

Also, the intra-phrase decoder returns only the completed translation options with

the least number of phrase-pairs from the second translation step. For example, if

translation options can be created using only one phrase-pair from the second transla-

tion step, then only these translation options will be returned. This aims to promote

the use of longer phrase-pairs in templates and reduces memory and time resource.

The outline of the algorithm is described in Figure 3.3.

3.4 Training

The training procedure is identical to the factored phrase-based training described in

(Koehn and Hoang, 2007). The phrase model retains the word alignment information

found during training. Where multiple alignment exists in the training data for a par-

ticular phrase pair, the most frequent is used. This is consistent with the treatment of

alignment used in the calculation of the lexicalized probabilities.

3.5 Experiments

Experiments were performed with the News Commentary corpus3 which contains

60,000 parallel sentences for German–English and 43,000 sentences for French–English.

Tuning was done on a 2000 sentence subset of the Europarl corpus (Koehn, 2005) and

tested on a 2000 sentence Europarl test set (out-of-domain), and 1064 news commen-

tary sentences (in-domain).

The training corpus is aligned using GIZA++ (Och and Ney, 2003). To create POS

tag translation models, the surface forms on both source and target language training

data are replaced with POS tags before phrases are extracted. The taggers used were

the Brill Tagger (Brill, 1995) for English, the Treetagger for French (Schmid, 1994),

and the LoPar Tagger (Schmidt and Schulte im Walde, 2000) for German. The training

script from the Moses toolkit (Koehn et al., 2007; Hoang and Koehn, 2008) was used,

3http://www.statmt.org/wmt07/shared-task.html

http://www.statmt.org/wmt07/shared-task.html
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Require: source subphrase s, 1st and 2nd translation steps

{”consult translation steps”}
P1←{},P2←{}
P1← phrase-pairs from 1st trans step for s

for all subspan of s do
P2← phrase-pairs from 2nd trans step for ssubspan

end for
{”decode”}
Insert stack0← empty trans-opt

for i = 0 to |s| do
for all trans-opt in stacki do

for all phrase-pairs ∈ P2 do
Expand new-trans-opt← trans-opt + phrase-pair

if new-trans-opt is consistent with at least phrase-pair in P1 then
C←coverage of new-trans-opt

insert stack|C|← new-trans-opt

end if
end for

end for
end for
{”completed translation options”}
discard incomplete trans-opts in stack|s|
T P2← argmint∈stack|s| segments(t)

return T P2 × consistent phrase-pair in P1

Figure 3.3: Creating Template Translation Options

extended to enable alignment information for each phrase pair. The vanilla Moses

MERT tuning script was used throughout.

Results are also presented for models trained on the larger Europarl corpora4.

3.5.1 German-English Results

The traditional, non-factored phrase-based model was used as a baseline which ob-

tained a BLEU score of 14.6% on the out-of-domain test set and 18.2% on the in-

4 http://www.statmt.org/europarl/

http://www.statmt.org/europarl/
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domain test set (see Table 3.4, line 1) for German-English.

A second baseline is a joint model (Chapter 2) in which POS tags for both source

and target languages are augmented to the training corpus and used in decoding with an

additional trigram POS sequence-model. Using the joint model increased translation

performance (line 2). This model has the same input and output factors, and the same

language models, as the following factored template models therefore offers a fairer

comparison than the non-factored baseline.

# Model out-domain in-domain

1 Unfactored Model 14.6 18.2

2 Factored Model (FM) 15.0 (+0.4) 18.8 (+0.6)
3 Factored template Model (FTM) 13.3 (-1.3) 16.1 (-2.1)

4 FM + FTM 15.3 (+0.7) 18.8 (+0.6)

Table 3.4: German–English results, in %BLEU

Decoding purely with the factored template model (line 3) results in a signifi-

cant performance degradation. However, when the factored template model is used

in combination with the factored model which jointly translate all factors (line 4), this

outperforms the baseline on the out-of-domain test set. We will refer to this as the

combination model.

When using the combination model, the factored template model is further con-

strained to create translation options that consist of a minimum of two phrase-pairs

from the second translation step. This avoids the duplication and allows translation

options from the factored template model to complement those of the factored model.

The results illustrate the utility of using the factored template model as an addi-

tional model to the factored model.

However, we believe the language pair German–English is not particularly suited

for the factored template approach as many of the short-range ordering properties of

German and English are similar.

3.5.2 French-English Results

Repeating the same experiments for French–English produces bigger gains by using

the combination model with gains of 1.0 BLEU (1.1 in-domain) over the unfactored

baseline and 0.8 (1.2 in-domain) over the factored model, Table 3.5.
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# Model out-domain in-domain

1 Unfactored Model 19.6 23.1

2 FM 19.8 (+0.2) 23.0 (-0.1)

3 FM + FTM 20.6 (+1.0) 24.2 (+1.1)

Table 3.5: French–English results, in %BLEU

3.5.3 Maximum Size of Templates

The maximum phrase length of seven words was used to extract phrase-pair templates

for the first translation step in the factored template model. The phrase table for this

translation step was retrained with varying maximum template lengths. Decreasing the

maximum length made little difference, Table 3.6. However, increasing the maximum

template length caused performance to drop dramatically. This results suggested that

the pruning parameters which limit resource usage during factored template translation

option creation has an adverse effect for long templates.

Maximum template length out-domain in-domain

5 20.6 24.2
7 20.6 (+0.4) 24.2 (+0.0)
8 20.7 (+0.1) 24.1(-0.1)
9 15.1 (-5.5) 17.5 (-6.7)

10 7.0 (-13.6) 7.7 (-16.5)

Table 3.6: Varying the maximum template lengths and effect on translation quality

3.5.4 Lexicalized Reordering Models

There has been considerable effort to improve reordering in phrase-based systems. One

of the most well known is the lexicalized reordering model (Tillmann, 2004) which cal-

culates the probability that a phrase is reordered from the word alignment information.

The reordering is relative to the source or target phrase, and to the next or previous

phrase-pair.

The lexicalized reordering model was trained and tested on the same data as the

factored template model above to compare their performance, Table 3.7. A lexicalized
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reordering model over the surface word and the part-of-speech tags were evaluated

and were found to improve on the baseline joint model. However, using a combination

model outperform both of these reordering models.

# Model out-domain in-domain

1 FM (baseline) 19.8 23.1

2 FM + FTM 20.6 (+0.8) 24.2 (+1.1)
3 FM + Lexicalized Reordering 20.2 (+0.4) 24.1 (+1.1)

4 FM + Lexicalized Reordering on POS 20.3 (+0.5) 24.0 (+0.9)

Table 3.7: French–English results for lexicalized reordering model

3.6 Analysis

3.6.1 Use of Factored Template Model during Decoding

We analyzed the usage of translation options during the decoding of the out-of-domain

French-English test set from the previous section. From Table 3.8, the translation

options from the factored template model account for only 11% of the total number

of phrase pairs used. However, of those 11%, nearly half of those translation options

involve some re-ordering of the internal phrases.

The reordering of phrases from the joint translation model within a template does

not incur a distortion penalty. Therefore, using the factored template model, in con-

junction with a standard factored model offers the decoder an alternative, linguistically

motivated method of explaining distortion to the simple linear distortion model of the

standard phrase-based model.

We see from Figure 3.4 when the decoder is given this alternative, it overwhelm-

ingly prefers to account for reordering with the factored template model. The normal

phrasal reordering is almost completely absent during decoding and, in fact, allowing

only monotonic translation is sufficient to obtain the same translation performance.

Table 3.9 compares the source phrase lengths of the translation options used by

the baseline factored model and the combination model. A noticeable effect of us-

ing the combination model is that the average length of the source segmentation de-

creases as more words are translated singularly. However, the combination model
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# of trans opt used Re-ordered

Factored model 33,785 89%

Factored template model

2 internal phrases 2,890 7% 1,239 43%

3 internal phrases 1,001 3% 406 41%

4 internal phrases 327 1% 201 61%

5 internal phrases 69 0% 54 78%

6 internal phrases 15 0% 15 100%

7 internal phrases 2 0% 2 100%

TOTAL 4260 11% 1917 45%

Table 3.8: Number of translation options to decode out-of-domain test set, French–

English

Figure 3.4: Average distortion cost per sentence

uses longer translation options more often, such as those which translate four or more

source words.

To reiterate, the combination model decodes with translation options from the fac-

tored template model in addition to the joint factored model. This creates an ideal

environment to study the relative utility of each translation model which competes for

application during decoding. Of the 4,260 factored template translation options used in

Table 3.9, only 8 were used in preference to a translation option from the joint model.

In the other 4252 cases, template translation options are used when a transla-

tion option from the factored model does not exist. This decoding pattern was also

seen when we experimented with alternative translation models in Section 2.4.7 for



3.6. Analysis 69

Segment length Factored Model Factored Model + Factored Template Model

Factored Model Factored Template Total

1 21,191 56% 25,825 76% 25,825 68%

2 10,750 28% 4,912 15% 975 23% 5,887 15%

3 4,495 12% 2,132 6% 815 19% 2,947 8%

4 1,233 3% 650 2% 924 22% 1,574 4%

5 261 1% 171 1% 722 17% 893 2%

6 91 0% 73 0% 504 12% 577 2%

7 14 0% 22 0% 320 8% 342 1%

TOTAL 38,035 100% 33,785 100% 4,260 100% 38,045 100%

Table 3.9: Size of source segments decoding out-of-domain French–English

out-of-vocabulary words of the previous chapter. In that case, the linguistically in-

formed translation model was only used in specific circumstances, when the standard

phrase-based translation model was unable to propose any translation options for out-

of-vocabulary words. The same is true of combination model; the factored template

model is rarely used unless translation options from the factored model do not exist.

3.6.2 POS Sequences Used

Table 3.10 lists the top 10 source POS tag sequences where template translation options

were used.

We see that the factored template model is applied most often to translate the source

POS sequence, NOUN ADJ. This is consistent with the fact that NOUN ADJ phrases

occur often with different surface forms of NOUN and ADJ. We saw in Table 3.1 that

it is frequently translated by swapping the order of the translated words. However,

unless the surface phrase has been seen in training, the standard phrase-based model

will often incorrectly translate the phrase by monotonically concatenating the lexical

translation. In contrast, the factored template model can guide reordering better and is

therefore used in preference to the joint model.

The source POS sequence, NOM PUN NOM, is interesting as it is mostly used to

translate noun phrases which have been mistokenized and mistagged. For example, the

French noun phrase, l’article exists in the training data as the following tokenization

and POS sequence
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Template # times used Example

1 nom adj 655 17% rapport général→ general report

2 nom pun nom 58 1% l ’ article→ the article

3 prp:det nom adj 57 1% des règles démocratiques→ democratic rules

4 det:art nom adj 49 1% la différenciation culturelle→ cultural differentiation

5 pun ver:pres 39 1% ’ est→ ’ is

6 nom prp nom 35 1% lieux travail→ work places

7 nom adj adj 34 1% produits alimentaires meilleurs→ better food products

8 pro:per ver:infi 33 1% les rejoindre→ join them

9 nom ver:pper 28 1% croissance soutenue→ sustained growth

10 ver:pres adv 28 1% offrent aussi→ also provide

Others 3244 76%

TOTAL 4,260 100%

Table 3.10: Top 10 POS tag sequence translated by factored template phrases

l’ (DET:ART) article(NOM)

but occurs twice in the test set with a different tokenization and tag sequence. The fac-

tored template model allows the system to recover from incorrectly tokenized phrases.

l (NOM) ’ (PUN) article(NOM)

Other templates in Table 3.10 concurs with our understanding of translating French to

English.

Table 3.10 also shows that usage of the factored template model is dispersed over

many different POS sequences. The distribution of use of the factored template model

follows a Zipfian distrubtion, in fact, 35% of the POS sequences are translated by a

factored template option only once, Figure 3.5.

It is not just the usage of the factored template model that follows a Zipfian dis-

tribution. Translations for a particular source POS sequence also follows a similar

distribution. For example, as we saw in Table 3.1 and 3.2 at the beginning of this

chapter, rare phrase-pairs that translate NOUN ADJECTIVE account for 44% seen in

the corpus. For translations of NOM ADJ KON ADJ, this account for 62%. (Here, rare

phrase-pairs are defined as those that account for less than 2%). In both cases, there

are a significant amount of phrase-pairs with just one example in the corpus. The

phrase-pair distribution of these POS sequences can be seen in Figure 3.6.
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Figure 3.5: Zipfian distribution of usage of factored template model

(a) NOM ADJ (b) NOM ADJ KON ADJ

Figure 3.6: Zipfian distribution: # examples against rank of phrase-pair (log-log scale)

The Zipfian distribution of POS phrase-pairs limits the generalizability of such

phrase-pair as much of the translation probability is accounted for in rare phrase-pairs.

The Zipfian distribution of POS phrase-pairs also account for the degraded perfor-

mance when using the factored template model alone. The phrase table, including the

POS template phrase table, must be pruned for efficient decoding but this will also

discard many of the phrase-pairs needed to construct good translation options. In the

factored template model, the POS phrase-table effectively filters out reorderings which

do not much match one of the top ranked POS phrase-pairs. However, the Zipfian dis-

tribution means that this filtering will discard much good reordering which cannot be

accounted for by POS sequences alone.

Therefore, a solution that we have explored is the combination model which uses

POS phrase-pairs but can also bypass it with alternative translation options from the

joint model. As we have seen, the combination model combines the advantages of both
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models to produce better translation results.

3.6.3 Manual Evaluation

We manually evaluated the translations of two source phrases with POS sequences

that standard phrase-based models often fail to reorder between French and English.

As we discussed at the beginning of the chapter, the following POS sequence is often

incorrectly translated due to reordering if it has not been seen in the training data even

though the POS sequence will have been seen many times and will strongly suggest a

reordering.

NOUN ADJ→ ADJ NOUN

A random sample of source phrases containing this POS sequence were analyzed.

The translation of each phrase was judged on coherency and correctness according to

the reference.

The baseline factored model correctly reorders 58% of those phrases. Adding a

lexicalized reordering model or the factored template model significantly improves the

reordering to above 70%, Figure 3.7.

Figure 3.7: Percentage of correctly ordered NOUN ADJ phrases (100 samples)

A more challenging phrase to translate, such as

NOUN ADJ CONJ ADJ→ ADJ CONJ ADJ NOUN

was judged in the same way and the results show a dramatic improvement of the com-

bination of the factored model and factored template model over the factored model

alone. This combination model also outperforms the factored model with lexicalized

reordering (Figure 3.8).
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Figure 3.8: Percentage of correctly ordered NOUN ADJ CONJ ADJ phrases (69 samples)

3.6.4 Larger training corpora

It is informative to compare the performance of the factored template model when

trained with more data. We therefore train on the larger Europarl corpora and tune the

models for French to English translation. The BLEU scores are shown in Table 3.11,

showing no significant advantage to adding POS tags or using the factored template

model. This result is similar to many others which have shown that the large amounts

of additional data diminishes the improvements from better models.

# Model out-domain in-domain

1 Unfactored Model 31.8 32.2

2 Factored Model (FM) 31.6 32.0

3 FM + Factored Template Model 31.7 32.2

Table 3.11: French–English results, trained on Europarl corpus

3.7 Conclusion

We have shown the limitations of the current factored decoding model which restrict

the use of long phrase translations of less-sparsed factors. This negates the effective-

ness of decomposing the translation process, dragging down translation quality.

An extension to the factored model was implemented which showed that using

POS tag translations to create templates for surface word translations can create longer

phrase translation and lead to higher performance, dependent on language pair.
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For French–English translation, we obtained a 1.1 BLEU increase on the out-of-

domain and in-domain test sets, over the non-factored baseline.



Chapter 4

Mixed-Syntax Translation

So far, we have defined our factored representation only over words. Using this word

representation to hold linguistically motivated annotation, we have sought to disam-

biguate source words and improve grammatically of the target language output.

In Chapter 3 on factored templates, templates of POS tags were also used to im-

prove reordering. We showed how a linguistically-motivated reordering constraint, in

the form of factored templates, can be used in combination with distance-based con-

straints. We also see that the use of factored templates negates the need for distance-

based constraints and almost completely replaces distance-based reordering during de-

coding. Even when phrasal reordering is limited only to factored templates, the per-

formance of the model was a significant improvement over the standard phrase-based

model.

However, we also saw that the factored template model on its own produces poor

performance, and that it must be used in combination with a standard factored phrase-

based model to achieve competitive results.

We also experimented in Chapter 2 with an analysis-generation translation model

which analyses the source, transfers the linguistic properties, and reconstitutes these

properties in the target language. This also resulted in significantly decreased perfor-

mance.

Nevertheless, the use of linguistic information to improve translation is an appeal-

ing concept, and one that should work. In both of the examples mentioned, attempting

to rigidly impose a linguistic transfer mechanism results in decreased performance,

but combining them with a non-linguistically motivated phrase-based model allows

the combination to use the strength of both.

However, the word-level representation of the previous chapters limits the potential

75
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of using linguistic annotation to a small window. With more training data, existing

models such as language models and translation models become better parameterized,

diminishing the gains that can be achieved from better, linguistically-motivated models

acting in a small window.

In this chapter, we take the lessons learnt from the factored phrase-based and fac-

tored template approaches to expand from a word level to a phrase-level linguistic

annotation of the source language. We transition from a phrase-based model to a hier-

archical phrase-based, or syntactic model. These models extend the notion of a phrase

from a sequence of words to a sequence of words and subphrases. Subphrases are rep-

resented by non-terminals, which can be undecorated in hierarchical models (Chiang,

2005), or decorated in syntax models (Marcu et al., 2006; Ambati and Lavie, 2008).

This approach offers a natural fit with multi-word linguistic annotation that we are

interested in studying.

By using multi-word annotation, we hope to better model phenomena that occur

over a larger window, such as long-distance reordering. Syntactic structures such as

parse trees offer a simpler explanation of reordering, for example, reordering an SOV

language to an SVO language.

This chapter presents a novel tree-to-string model, the mixed-syntax model, which

combines the specificity of syntactic models and the generality of the hierarchical

phrase-based model. The aim of the model is two-fold. Firstly, the model can make use

of syntactic information but also permits linguistically unmotivated mappings. Sec-

ondly, we take advantage of the specificity of syntactic constraints to permit different

rule forms when compared to the hierarchical model but still maintain efficient training

and decoding.

4.1 Past Work

4.1.1 Overview

Translation rules in the standard phrase-based model consist of a continuous sequence

of words (‘phrase’) in the source language and its corresponding translation in the

target language.

The hierarchical phrase-based model extends the phrase-based model by allowing

‘hierarchical phrases’ that contain subphrases. Translation rules are comprised of a

source and target hierarchical phrase, and a one-to-one mapping between their sub-
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phrases. Subphrases are represented in translation rules as non-terminal symbols. This

model has certain advantages over the standard phrase-based model. Firstly, hierarchi-

cal rules can express the reordering of subphrases from the position of non-terminals

in the source and target phrase. Hierarchical models promise better reordering as the

reordering rules are lexicalized and an implicit part of the translation model. This

contrasts with the phrase-based model where reordering is modelled separately from

translation.

Secondly, hierarchical rules can model the translation of discontinuous phrases,

such as the French, ne...pas. Thirdly, hierarchical rules follow the recursive structure

of the sentence, reflecting the linguistic notion of language.

The rules in hierarchical phrase-based models are examples of a synchronous context-

free-grammar (SCFG). The general form of a SCFG rule is two linked CFG rules,

shown below. The source rewrite rule parses the input while the target rule simultane-

ously outputs the translation.

〈A→ α , B→ β,∼〉 (4.1)

where A and B are non-terminals in the source and target language, respectively, α

and β are strings of terminals and non-terminals, and ∼ is a one-to-one mapping of

non-terminals in α and β.

Note that this notation, due to Satta and Peserico (2005); Huang et al. (2009), is

slightly different from the one used by Chiang (2005). It is more flexible in the sense

that it allows different symbols to be synchronized, which is essential to capture the

syntactic divergences between languages, however, it can be reduced to Chiang (2005)

notation simply by combining the linked source and target non-terminal symbols, eg.

X = (A,B).

X → 〈α , β , ∼〉 (4.2)

The hierarchical phrase-based model simplifies the SCFG by using only two non-

terminal symbols, X and S. Translation rules extracted from the grammar all use the

label X . The label S is used by ‘glue’ rules to monotonically concatenate partial deriva-

tions of the source sentence, ensuring that a translation can be produced for every input

sentence.

The most common algorithm for decoding with SCFG is currently CKY+ (Chappe-

lier et al., 1998) with cube pruning (Huang and Chiang, 2007), as described in Chiang

(2007) and implemented in Chiang (2005); Li et al. (2009); Hoang et al. (2009). This

can be used for hierarchical and some syntactic models.
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Our focus in this chapter is on improving translation with a tree-to-string model

using a synchronous CFG. However, we shall continue by discussing syntactic models

in general as many of the techniques and arguments are applicable to any syntactic

formalism.

4.1.2 Synchronous Tree-Substitution Grammar

A more powerful formalism than SCFG which has been applied to machine transla-

tion is synchronous tree-substitution grammar (STSG) (Eisner, 2003) which expresses

rewrite rules as multi-level structures. This goes some way to alleviating the non-

isomorphism problem between languages. Chiang (2006) gives a good introduction to

STSG which we will summarize.

We start by explaining the (monolingual) tree-substitution grammar (TSG). Rules

in a TSG are tree fragments whose leaf nodes are terminals or non-terminals. To parse

a sentence with a TSG, we start with a tree fragment rooted at the start symbol and

repeatedly choose a leaf non-terminal NT to which a tree fragment rooted in NT can

be attached. The parse completes when the leaf nodes of the tree correspond to the

words in the sentence and there are no leaf non-terminals. For example, to parse the

sentence

John misses Mary

with the following TSG rules:

Rule 1: S

VP

NPV

misses

NP

Rule 2: NP

John
Rule 3: NP

Mary

The parsing method can proceed as follows:
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S

VP

NPV

misses

NP

⇒ S

VP

NPV

misses

NP

John

⇒ S

VP

NP

Mary

V

misses

NP

John

Synchronous TSG extends the monolingual TSG in which rules are a pair of tree-

fragments where the leaf non-terminals are linked. The source side of the STSG ana-

lyzes the input while the target side simultaneously constructs a target derivation.

In tree-to-string and tree-to-tree models such as those described in Huang et al.

(2006b), the input is a parsed sentence. Translation involves recursively converting the

input parse tree into a string or tree of the target language.

For example, the tree below is a parse of the previous example sentence:

Input Parse

S

VP

NP

Mary

V

misses

NP

John

This parsed sentence can be converted to a target tree using the following STSG:

Rule1 : S

VP

NP2V

misses

NP1

, S

VP

PP

NP1P

à

V

manque

NP2

Rule2 : NP

John

, NP

Jean

Rule3 : NP

Mary

, NP

Marie
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The decoding algorithm converts fragments of the source parse tree into a target tree:

S

VP

NP2V

misses

NP1

, S

VP

PP

NP1P

à

V

manque

NP2

⇓

S

VP

NP2V

misses

NP

John

, S

VP

PP

NP

Jean

P

à

V

manque

NP2

⇓

S

VP

NP

Mary

V

misses

NP

John

, S

VP

PP

NP

Jean

P

à

V

manque

NP

Marie

Notice that the use of STSG has freed us from creating isomorphic derivations, as with

a SCFG.

The tree-to-string models of Huang et al. (2006a); Liu et al. (2006, 2007); Mi et al.

(2008); Mi and Huang (2008) follow Galley et al. (2004) by using tree-transducers

which are equivalent to a tree substitution grammar on the source side and a CFG on

the target side. The CFG is created by collapsing the tree-fragment of the target TSG.
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The STSG rules in the previous example can be written as a tree-transducer grammar:

Rule 1: S

VP

NP2V

misses

NP1

,S→ NP2 manque à NP1

Rule 2: NP

John

,NP→ Jean

Rule 3: NP

Mary

,NP→Marie

The tree-to-string translation models of Huang et al. (2006a); Liu et al. (2006)

take as input a parse tree and apply tree-transducer rules until all terminals and non-

terminals in the parse tree have been covered. The result of decoding is a source

derivation which matches the input parse, and the target string.

The tree-transducer approach can be approximated by flattening both the source

and target side of STSG rules to create SCFG rules with labelled source non-terminals.

During decoding, the non-terminals are constrained to match the syntactic labels for

the span in the input parse tree. This is roughly equivalent to decoding with a STSG

where the leaf non-terminals and root nodes of a tree-fragment match a part of the

input parse tree, but the interior nodes of the tree-fragment are ignored.

The above rules can be converted to a SCFG formalism of Equation 4.1.

〈S→ NP1 misses NP2 , S→ NP2 manque à NP1〉

〈NP→ John , NP→ Jean〉

〈NP→Mary , NP→Marie〉

If we wish to make explicit a tree-to-string model, target non-terminals symbols can

be replaced with an uninformative label X :

〈S→ NP1 misses NP2 , X → X2 manque à X1〉

〈NP→ John , X → Jean〉

〈NP→Mary , X →Marie〉

The result of decoding is a target string and source derivation which match the input

parse, or a ‘flattened’ version of the parse. Therefore, decoding with this grammar
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may not include all of the intermediate nodes of the source parse tree. However, our

primary goal is translation, not reproducing the source parse tree.

The same parsed sentence above can be decoded with this synchronous CFG gram-

mar.

Decoding

S

NP2missesNP1

, X

X1manque àX2

⇓

S

NP2missesNP

John

, X

X

Jean

manque àX2

⇓

S

NP

Mary

missesNP

John

, X

X

Jean

manque àX

Marie

4.1.3 Syntax Models

The use of syntax in statistical machine translation has a long history. Many of the

formalisms have been studied and returned to many times by different researchers.

Chiang (2010) listed the main syntax approaches which we reproduce in Table 4.1.

The table also lists some of the early contributors, roughly before the introduction of

phrase-based models by Zens et al. (2002); Koehn et al. (2003); Och and Ney (2004),

and later contributors after its introduction. In the following section, we shall review

these and other research into syntactic machine translation.

Wu (1997) introduced the stochastic inversion transduction grammar (ITG) which

restricts rules with non-terminals to two configurations. An ITG is equivalent to a

SCFG of rank two where the two permitted configurations for hierarchical phrases are

unlexicalized rules with two non-terminals, linked so that their subphrases are concate-
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Formalism Early research Later research

String-to-string ITG (Wu, 1997) Hiero (Chiang, 2005)

String-to-Tree (Yamada and Knight, 2001) (Galley et al., 2004, 2006)

Tree-to-String (Huang et al., 2006a; Liu et al., 2006)

Tree-to-Tree (Poutsma, 2000; Eisner, 2003) (Lavie, 2008)

(Zhang et al., 2008a)

(Liu et al., 2009a)

Table 4.1: Syntax Formalisms

nated or swapped. These can be written using the familiar SCFG notation:

〈 X → X1 X2 , X → X1 X2 〉

〈 X → X1 X2 , X → X2 X1 〉

The hierarchical phrase-based model (Chiang, 2005) extends the phrase-based model

by allowing phrases containing subphrases in the translation rule. In contrast to the

ITG model, it does not limit ordering to only two possibilities but instead learns lexi-

calized reordering rules from the parallel corpus. The ITG and hierarchical models are

classified as string-to-string models because they do not use syntactic information.

4.1.4 String-to-Tree Models

The aim of generating syntactic trees is to improve output grammaticality by con-

straining output derivations to grammatically correct parse trees according to the target

syntax.

Yamada and Knight (2001, 2002) studied the use of English parse trees for Japanese-

English translation which typically exhibit large scale reordering due to the SVO and

SOV characteristics of English and Japanese respectively. Lexical translation is per-

formed with a word-based and phrase-based translation model while syntactic transla-

tion is performed through a series of structural operations which create and manipulate

the target parse tree. The performance exceeded IBM Model 5 but the training data

used was very small.

Ambati and Lavie (2008) tested a string-to-tree and tree-to-tree model on the large

Europarl corpus (Koehn, 2002) and showed that the lack of coverage adversely affects
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the recall of the extracted translation model. The resulting translations are significantly

worse than those of hierarchical or phrase-based models.

Galley et al. (2004) describes an extraction procedure which creates a set of min-

imal translation rules to explain a parallel sentence pair. This work was extended in

Galley et al. (2006) which creates larger rules composed of multiple minimal rules.

However, the reported performance of string-to-tree models with composed rules were

still significantly worse than the ATS phrase-based model of Och and Ney (2004).

As Wang et al. (2010) pointed out, it would be surprising if the parse structures

and word alignments were perfectly suited for syntax-based SMT out-of-the-box. The

objectives of the parsing model do not necessarily concur with the objectives of ma-

chine translation, therefore, to successfully exploit syntactic information it is necessary

to use those parts which are useful to SMT, and alter or overcome those parts which

are not. This insight is a reason why string-to-tree models have shown great improve-

ments in recent years. Many such models consistently outperform phrase-based and

hierarchical phrase-based models, at least for some language pairs.

Zollmann and Venugopal (2006) manages to create a competitive string-to-tree

model by generating artificial constituents of a parsed sentence by merging the syntac-

tic labels of adjacent, parent and child constituents, which they called syntax augment

machine translation (SAMT). This improves the coverage of the syntactic translation

model as more translation rules can be extracted where non-terminals do not exactly

span a target constituent. The non-terminals are then labeled with complex SAMT la-

bels. The cost of this model is a high number of SAMT labels, resulting in data sparsity

issues as well as an increase in resource utilization.

The issue of data sparsity using SAMT is tackled in (Venugopal et al., 2009) which

maps all SAMT labels to a single hierarchical style non-terminal. The syntactic labels

are used to calculate feature scores to softly constrain derivations.

Binarization of SCFG-based translation rules (Zhang et al., 2006; Wang et al.,

2007; Huang, 2007; Xiao et al., 2009; DeNero et al., 2009) reduces the rank of the

grammar to two to simplify and speed up decoding. However, the language gener-

ated from the binarized grammar is equivalent, or weakly equivalent, to the original

grammar. This contrasts with the approach described by Wang et al. (2010) which

restructures and relabels the parse trees using binarization methods to create a better

grammar for machine translation.
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4.1.5 Tree-to-String Models

Tree-to-string models take as input a parse tree of the source sentence which is then

recursively converted into a string of the target language. These models suffer from

similar coverage problems and lack of generality as string-to-tree models. However,

Huang (2008) evaluated a tree-to-string model trained on a small dataset for a Chinese-

English system and reported better performance than phrase-based models.

Zhang et al. (2008b) introduces the synchronous tree sequence substitution gram-

mar (STSSG) based on an extension to the synchronous tree-substitution grammar

(STSG) described in Section 4.1.2. The model differs from STSG-based models in

that translation rules are composed of multiple tree fragments. This gives the model

more expressive power by allowing it to capture non-syntactic phrases, leading to bet-

ter translation. They show that the STSSG is a generalization of STSG, SCFG, and

tree-transducer models.

An alternative to rigidly converting the source parse structure is to use the parse of

the source sentence as the basis for feature functions to softly constrain the derivation

during decoding. This approach provides better coverage as the translation model can

use the source syntactic structure but is not constrained by it.

Marton and Resnik (2008) add feature functions to penalize or reward non-terminals

which cross constituent boundaries of the source sentence. This follows on from un-

successful earlier work by Chiang (2005) but this time they see gains when used with

finer grain feature functions with different constituency types. The weights for feature

function are tuned in batches due to the deficiency of the Minimum Error Rate Training

when presented with many features.

Chiang et al. (2008) rectify the deficiency of using MERT by replacing it with

MIRA (Crammer et al., 2006) to tune all feature function weights in combination.

Chiang et al. (2009) add thousands of linguistically-motivated features to hierarchical

and syntax systems, including source syntax features derived from the research above.

Shen et al. (2009) discuss soft syntax constraints and context features in a depen-

dency tree translation model. The POS tag of the target head word is used as a soft

constraint when applying rules. Also, a source context language model and a depen-

dency language model are used as features.

An issue which affects all syntactic models is parse errors. In string-to-tree models,

this adversely impacts the quality of the translation model. In tree-to-string models,

parse errors of the input sentence can also propagate to translation errors. A solution to
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input parse errors is to postpone the disambiguation of the best parse by providing the

machine translation training and decoding systems with many possible parses gener-

ated by the parser. The obvious method to accomplish this is the use of an n-best list of

possible parses. During extraction, translation rules are constrained with non-terminals

from each of the n-best parses. During decoding, the decoder is free to choose which

input parse to convert to a target string.

An extension of this method uses a parse forest which compactly encode many

parses within an efficient structure. It was found that using an n-best list of parses

achieved better results than using the 1-best parse. However, only by using a forest

of translations, during both training and decoding, does the performance exceed that

of hierarchical models. Tree-to-string models using packed forest input are described

by Huang et al. (2006a); Liu et al. (2006, 2007); Mi et al. (2008); Mi and Huang (2008).

4.1.6 Tree-to-Tree Models

Early work by Poutsma (2000) and Eisner (2003) describes theoretical foundations and

prototype implementation for such a model but the training data size was too small to

judge the results against current SMT systems.

As can be expected, the naı̈ve implementation of tree-to-tree models which doubly

constrain extraction and decoding with both source and target parses reduces coverage

and performance even more than other syntax models. This result has been found by

Ambati and Lavie (2008), amongst others.

To increase coverage, the same techniques such as using packed forest for source

sentences instead of 1-best parse can be applied. This was studied by Liu et al. (2009a)

who reported good performance for a Chinese-English system trained on small data

but no significant gain when used with large training data.

Zhang et al. (2008a) uses tree sequences which allows tree fragments and phrases

in translation rules.

Chiang (2010) continued the line of research from (Chiang et al., 2009) by adding

both source and target syntactic feature functions into the log-linear framework to soft-

constrain the model.

4.1.7 Summary of Past Work

From the discussion in the last sections, the key to competitive syntax models is lever-

aging syntactic information while not decreasing translation model coverage. Rigidly
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imposing a syntactic transfer mechanism significantly decreases performance. This

has been reported in Koehn et al. (2003); Och et al. (2004); Ambati and Lavie (2008);

Liu et al. (2009b), amongst others, and has been the lesson we also learnt from our

own work on factored translation and factored templates.

The tree-to-string model of Huang et al. (2006b) constrains the derivation with

a source parse. To improve coverage and performance, Mi et al. (2008); Liu et al.

(2006) also use phrase-based bilingual phrase-pairs to increase coverage, however,

these bilingual phrases are limited to span syntactic constituents.

An extension of the tree-to-string model is the forest-to-string model. However,

there are two main arguments against the forest-based approach as described by Huang

et al. (2006a); Liu et al. (2006, 2007); Mi et al. (2008); Mi and Huang (2008); Liu et al.

(2009a). Firstly, the forest must be pruned to make decoding tractable but pruning is

a heuristic that offers no theoretical guarantees that the forest will contain the correct

parse. The pruning parameters and algorithm must be tuned and these are critical to

the performance of the model.

The second issue with forest-based models is the stated claim that deferring parse

disambiguation until decoding allows the decoder to recover from parsing errors. How-

ever, there is scant analysis of whether better translation performance is due to recovery

from parse errors, or because using a forest improves coverage.

Zhang et al. (2009) combines the forest approach with tree sequences where they

note that the two methods are complementary. While forest-based modelling allows

the system to recover from parse errors, using tree sequences enables the system to

model cross-lingual structural divergence.

Our proposed mixed-syntax model does not require a parse forest as input, just the

1-best parse. Rather than be strictly constrained to a parse and having to assert an

incorrect parse, we can choose to ignore parts of the derivation if they are not helpful

to translation. We do not try to improve coverage by propagating uncertainty from the

parser, but build flexibility into the translation rule.

Nor does our proposed model require ad-hoc schemes such as those of SAMT to

categorize spans without syntactic labels. The model only uses labels that are presented

by the parser and ignores syntax when they are not present.

Soft-constraints have been used instead of hard constraints to improve coverage.

Chiang et al. (2008, 2009); Chiang (2010) all use models which have the same trans-

lation rule form as the linguistically unaware hierarchical phrase-based model then

parameterize the model with syntax-based feature functions. However, this approach
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means that they miss the opportunity to use syntactic information to use rule forms not

found in the hierarchical model without over-generation during extraction and spurious

ambiguity in decoding.

We have seen in Chapters 2 and 3 that better parameterization of existing models

can be achieved with more data. Yet long-range dependency, such as long-distant re-

ordering, remains one of the biggest issues facing machine translation. Rather than us-

ing syntax for improved parameterization but continuing to constrain the model using

linguistically unjustified distortion limits and heuristics to contain its computational

feasibility, we will use syntax to alter the constraints to tackle long-range dependency.

4.2 Model

4.2.1 Preamble

The key difference between the hierarchical model and the various forms of syntactic

models is that non-terminals in the hierarchical model are undecorated. Therefore,

rewrite rules in hierarchical models have general applicability and broad coverage.

However, the general applicability of undecorated non-terminals allows rules to be

used in inappropriate situations. This creates spurious ambiguity, increases running

time and causes translation errors. In contrast, the decorated non-terminals in syntactic

models constrain the application of rewrite rules, increasing specificity but limiting

coverage.

We present the mixed-syntax model which combines the hierarchical and tree-to-

string models, utilizing the broad coverage of hierarchical decoding and the insights

that syntactic information can bring. The model seeks to balance the generality of

using undecorated non-terminals with the specificity of decorated non-terminals.

The model uses syntactic labels from a source language parser to label non-terminals.

However, it is not necessary that the syntactic information form a tree structure, such

as a parse tree. The mixed-syntax model is able to make use of syntactic labels as long

as they relate to contiguous spans on the source sentence. We can therefore utilize

other syntactic tools such as shallow taggers.

In the coming section, we will define the model and decoding algorithm as a de-

ductive proof system (Shieber et al., 1995). A deductive proof system is a set of items,

Ai and B, and inference rules of the form

A1 ... Ak

B
(side conditions on A1...Ak,B)
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If all the items A1...Ak (called the antecedent) are provable, then item B (called the

consequence) is provable. The deductive process starts with axioms, rules are applied

to more and more items until a goal is proven.

4.2.2 CKY for Parsing

As an example, for parsing a sentence s = s1...s|s|, the CKY parsing algorithm can be

expressed as a deductive proof system, below.

Item forms

[X , i, j] is a subtree spanning from i to j rooted in X.

(X → γ) - a rule where X is rewritten as γ

Axioms

[X → γ]
X → γ ∈ G

Goal

[S,0, |s|]

Inference rules
[Z→ si+1]

[Z, i, i+1]

[Z→ XY ] [X , i,k] [Y,k, j]
[Z, i, j]

where S is the start symbol of the grammar.

4.2.3 CKY+ for Parsing

The CKY+ algorithm (Chappelier et al., 1998) generalizes the CKY algorithm by per-

mitting grammar rules not in Chomsky normal form, allowing for partially lexicalized

rules, and rules with more than two non-terminals on the right-hand-side. The CKY+

algorithm can be expressed as a deductive proof system using dotted chart notation.

The dotted chart notation is used to describe an active chart parser which applies

rewrite rules by recognizing each symbol on the right-hand-side, one symbol at a time.

A symbol can be a terminal or non-terminal. The recognition of symbols in the rewrite

rules is performed strictly left-to-right.

The form of a dotted rule for a monolingual parser is

A→ α•β
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where α and β are string of terminals and non-terminals. α and β can be empty, but not

both. Symbols in α have been recognized (‘consumed’), while symbols in β have not.

A rule is said to be active if β still contain symbols. The rule is passive if all symbols

on the right-hand-side have been consumed. The non-terminal A can then be rewritten

as the string α β.

The CKY+ algorithm therefore begin with a set of rules from the grammar where

no symbol has been consumed. It ends when a passive rule exist that spans the entire

sentence.

Item forms

1. (A→ α) is the source side of the synchronous translation rule which rewrites the

source non-terminal A as the string α.

2. [A→ α • β, i, j], a subtree spanning rooted in A where the string α has been

recognized in the span i to j. String β has yet to be recognized.

Axioms

[A→•α, i, i]
(A→ α) ∈ G (4.3)

Terminal Symbol
[A→ α• s j+1 β, i, j]

[A→ α s j+1 •β, i, j+1]
(4.4)

Non-Terminal Symbol

[A→ α•B β, i, j] [B→ γ•, j,k]
[B→ α B•β, i,k]

(4.5)

Goal

[S→ α•,0, |s|] (4.6)

We use the convention of denoting non-terminals with capital letters (X , Y , S), and

strings of terminals and non-terminals with Greek letters (α, β, γ).

Equation 4.4 recognizes terminal symbols in the input string. Equation 4.5 is

known as the fundamental rule of chart parsing (Kay, 1980) which recognizes non-

terminals.

4.2.4 CKY+ for Hierarchical Phrase-Based Model

A context-free-grammar and the CKY+ algorithm can be used for translation by ex-

tending the CFG rules to a synchronous CFG which simultaneously parses the source

sentence while generating the target sentence. The hierarchical phrase-based model
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simplifies the SCFG translation rules of Equation 4.1 by making linked source and

target non-terminals to be identical symbols.

Furthermore, the hierarchical phrase-based model limits the number of non-terminal

symbols to one (two if we count the non-terminal S used by the glue rule). Therefore,

the deductive proof for the hierarchical phrase-based translation model is identical to

the monolingual parsing model, above, except for Equation 4.5, which can be simpli-

fied to:

Non-Terminal Symbol

[X → α•X β, i, j] [X → γ•, j,k]
[X → α X •β, i,k]

(4.7)

Many hierarchical and syntax-based SMT decoders, such as Hiero (Chiang, 2005),

Joshua (Li et al., 2009) and Moses (Hoang et al., 2009) use the CKY+ algorithm for

decoding.

4.2.5 Syntax Decoding using a SCFG

A translation model based on a SCFG can approximate a tree-to-tree model by requir-

ing the source non-terminals to match the labels of the input parse tree. The target

non-terminals of the parent rule also need to match the left-hand-side of the child rule.

An input parse tree can be approximated with a tuple 〈s,V 〉 of words s1:|s| in the

sentence and a set of span labels Vi, j for all spans [i, j] where 0 6 i < |s| and i+ 1 <

j 6 |s|.
The general form of translation rules in a SCFG-based model is two CFG rules,

linked by their non-terminals, Equation 4.8.

〈A→ α , B→ β , ∼〉 (4.8)

where α and β are strings of terminals and non-terminals. A and the string α are drawn

from the same source alphabet, ∆s. B and β are drawn from the target alphabet ∆t . ∼
is the one-to-one correspondence between non-terminals in α and γ.

We extend the dotted chart notation from Section 4.2.3 to require the matching of

the source left-hand-side of each translation rule, in addition to consuming symbols

on the right-hand-side. Therefore, entries in the active parser for the translation model

have the form:

( •A→ α
′ •α

′′ , B→ β )
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Only when all symbols in the source left-hand-side and right-hand-side are consumed

is the rule be considered passive.

( A•→ α• , B→ β )

The deductive proof system for the SCFG-based syntax model is shown following.

Item forms

1. (A→ α,B→ β) is a synchronous translation rule which rewrites the source non-

terminal A as the string α, and simutaneously rewrites the target non-terminal B

as the string β.

2. [•A→ α′ •α′′,B→ β, i, j] is a source subtree rooted in A and a target subtree

rooted in B. The string α′ has been recognized in the span i to j. String α′′ and

the source non-terminal A has yet to be recognized.

3. [•A→ α′ •Cn α′′,X → β′ Dn β′′, i, j] is a source subtree rooted in A and a target

subtree rooted in B. The string α′ has been recognized in the span i to j. The

non-terminal Cn on the source is linked to Dn on the target. The string Cn α′′ and

the source non-terminal A has yet to be recognized.

Axioms

[•A→•α,B→ β, i, i]
(A→ α,B→ β) ∈ G (4.9)

Terminal Symbol

[•A→ α′ • s j+1 α′′,B→ β, i, j]
[•A→ α′s j+1 • α′′,B→ β, i, j+1]

(4.10)

Non-Terminal Symbol

[•A→ α′ •Cn α′′,B→ β′ Dn β′′, i, j] [C•→ γ •,D→ δ, j,k]
[•A→ α′ Cn •α′′,B→ β′ Dn β′′, i,k]

C ∈Vj,k (4.11)

Left Hand Side
[•A→ α•,B→ β, i, j]
[A•→ α•,B→ β, i, j]

A ∈Vi, j (4.12)

Goal

[S•→ α•,S→ β,0, |s|] (4.13)

The fundamental rule in Equation 4.11 expresses the constraint that non-terminals

in the parent rule must match the child left-hand-side for both the source and target.

Equation 4.12 constrain the source left-hand-side non-terminal to also match an

input constituent label of the span the rule covers.
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The above formalism specify a tree-to-tree model. For a tree-to-string model, the

target non-terminals is limited to one label (two counting the non-terminal S used by

the glue rule). Therefore, Equation 4.11 can be simplified to:

Non-Terminal Symbol

[•A→ α′ •Cn α′′,X → β′ Xn β′′, i, j] [C•→ γ •,X → δ, j,k]
[•A→ α′ Cn •α′′,X → β′ Xn β′′, i,k]

C ∈Vj,k (4.14)

4.2.6 Mixed-Syntax Model

We believe that the tree-to-string tree-transducer model of Huang et al. (2006a) limits

the use of empirically well-founded but linguistically unmotivated translation rules.

We know from Koehn et al. (2003); Och et al. (2004); Ambati and Lavie (2008),

amongst others, that rigidly restricting translation to syntactic constituents negatively

affects translation performance.

Therefore, the mixed-syntax model relaxes the constraints of the tree-to-string model

of Huang et al. (2006a) in three main ways.

Firstly, non-terminals in translation rules are not required to have syntactic labels,

but can also be ‘undecorated’. Syntactic, or ‘decorated’, non-terminals can only apply

to source spans which have been labelled with the same symbol by the parser. Undec-

orated non-terminals can apply to any span. Rules can have a mixture of decorated and

undecorated non-terminals.

This is implemented by using a special symbol X to denote an undecorated non-

terminal. The constituents labels of the parse tree are stored in cells of a chart. In

addition, every cell also contains the special X symbol.

Secondly, the mixed-syntax model uses the formalism described in Section 4.2.3 to

approximate the tree-transducer translation model by using SCFG rules with the same

root and leaf nodes but ignores the interior nodes of the tree-fragment.

Thirdly, the leaf non-terminal of rules in a derivation is not constrained to match

the root node of their child rules. Therefore, each node in the source derivation is not

consistently labelled by the root-node of the child rule and the non-terminal symbol of

the parent rule. However, decorated non-terminals are constrained by the source parse.

4.2.7 Formal Definition of the Mixed-Syntax Model

In common with most current SMT systems, and with the phrase-based model de-

scribed in Chapter 2, the objective of decoding is to find the target translation t̂ with
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the maximum probability, given a source sentence, s. As in Chapter 2, we use the

maximum derivation as an approximation to maximum translation.

t̂ = t
[

arg max
d s.t. s(d)=s&Sync(d,V )

p(d)
]

(4.15)

where p(d) is the model and the argmax function is the search. The ‘derivation’ d is

an ordered set of translation rules that completely translate s to t. s(d) and t(d) is the

source and target yield of d, respectively. Sync(d,V ) is the syntactic constraint that we

will describe below in the algorithm section.

p(d) is calculated within a log-linear model described in Chapter 2 which allows

arbitrary component models to be used and weighting each model according to its

contribution to the total probability.

p(d) =
1
Z

exp

[
∑
m

λmhm(d)

]
(4.16)

where hm(d) is the feature function for component m and λm is the weight given to

component m. The normalization factor Z does not affect optimization, and the exp()

function is monotonic, therefore, the log-linear model can be expressed as a linear

model.

t̂ = t
[

arg max
d s.t. s(d)=s & Sync(d,V )

∑
m

λmhm(d)
]

(4.17)

4.2.8 Decoding with the Mixed-Syntax Model

The definition of the mixed-syntax model is a variation on the model described in

Section 4.2.5.

Again, the input sentence is a tuple 〈s,V 〉 of words s1:|s| and a set of span labels

Vi, j for all spans [i, j] where 0 6 i < |s| and i + 1 < j 6 |s|. In addition, a source

non-terminal symbol, X , representing the undecorated label is added to all spans.

Translation rules are synchronous context-free-grammar formulated in Equation 4.8.

However, the output is non-syntactic, therefore, we can simplify the target side by re-

placing target non-terminals with a non-syntactic X , Equation 4.18.

〈A→ α , X → β , ∼〉 (4.18)

where α and β are strings of terminals and non-terminals. A and the string α are drawn

from the same source alphabet, ∆s. ∼ is the one-to-one correspondence between non-

terminals in α and γ.
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Again, we formally describe the algorithm using the deductive proof system.

Item forms

1. (A→ α,X→ β) is a synchronous translation rule which rewrites the source non-

terminal A as the string α, and simutaneously rewrites the target non-terminal X

as the string β.

2. [•A→ α′ •α′′,X → β, i, j] is a source subtree rooted in A and a target subtree

rooted in X. The string α′ has been recognized in the span i to j. String α′′ and

the source non-terminal A has yet to be recognized.

3. [•A→ α′ •Cn α′′,X → β′ Xn β′′, i, j] is a source subtree rooted in A and a target

subtree rooted in B. The string α′ has been recognized in the span i to j. The

non-terminal Cn on the source is linked to Xn on the target. The string Cn α′′ and

the source non-terminal A has yet to be recognized.

Axioms

[•A→•α,X → β, i, i]
(A→ α,X → β) ∈ G (4.19)

Terminal Symbol

[•A→ α′ • s j+1 α′′,X → β, i, j]
[•A→ α′s j+1 • α′′,X → β, i, j+1]

(4.20)

Non-Terminal Symbol

[•A→ α′ •Cn α′′,X → β′ Xn β′′, i, j] [B•→ γ •,X → δ, j,k]
[•A→ α′ Cn •α′′,X → β′ Xn β′′, i,k]

C ∈Vj,k (4.21)

Left Hand Side
[•A→ α•,X → β, i, j]
[A•→ α•,X → β, i, j]

A ∈Vi, j (4.22)

Goal

[S•→ α•,S→ β,0, |s|] (4.23)

From Equations 4.19, 4.20, 4.23, the mixed-syntax model is initialized, recognizes

terminal symbols, and completes identically to the syntax model of Section 4.2.5.

The biggest change is in the fundamental rule of Equation 4.21. The side condition

constrain the non-terminal to be consumed, C, to match a symbol in the span. However,

C is not constrained to match the left-hand-side of the child rule, B.

Also, every span Vi, j in the input sentence also contains the undecorated non-

terminal X , therefore, the non-terminal C in Equation 4.21 and A in Equation 4.22

can be syntactic or non-syntactic.
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The decoding algorithm closely follows the CKY+ algorithm described by Chi-

ang (2007). A difference concerns the definition of the span limit. The span limit in

(Chiang, 2007) specifies the maximum number of source words the entire translation

rule can cover. The mixed-syntax model defines it as the maximum number of source

words each non-terminal can cover. The span limit for decorated and undecorated

non-terminals can be set independently.

4.2.9 Feature Functions

Five component models were used, for all decoding models. The feature function hm

for each component model is shown below:

1. Translation probability.

hT M(d) = log ∏
[A→α,X→γ]∈d

p(X → γ|A→ α) (4.24)

2. Language model

hLM(d) = log p
[

t(d)
]

(4.25)

3. Rule count

hRC(d) = |d−dg| (4.26)

4. Word count

hWC(d) = |t(d)| (4.27)

5. Glue count

hGLUE(d) = |dg| (4.28)

dg ⊂ d are the glue rules which monotonically concatenate partial derivations.

Phrasal probabilities are calculated using fractional counts as described in (Chiang,

2005) which gives a count of one to each initial phrase occurrence, then distributes its

weight evenly among the rules obtained by subtracting subphrases from it. The counts

are also smoothed using Good-Turing discounting (Foster et al., 2006). The translation

model parameterization includes a phrase count feature function, however, the lexical

and backward probabilities are not used.

The minimum error rate training algorithm (Och, 2003) was used to opitimize the

weights, λm.
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4.2.10 Example Decoding with the Mixed-Syntax Model

Supposing a parsed input sentence and the mixed-syntax grammar, below:

Input: S

VP

NE

pas

VB

vu

PRO

lui

NE

ne

NP

PRO

je

Grammar:

〈S→ NP1 V P2 , X → X1 X2〉

〈PRO→ je , X → I〉

〈PRO→ lui , X → him〉

〈V B→ vu , X → see〉

〈V P→ ne X1 pas , X → did not X1〉

〈X → PRO1 V B2 , X → X2 X1〉

The input can be translated as follows:

Derivation 1: S

VP2NP1

, X

X2X1

⇓

Derivation 2: S

VP2
NP

PRO

je

, X

X2X

I

⇓

Derivation 3: S

V P
V P

pasX1ne

NP
PRO

je

, X

X

X1notdid

X

I

⇓
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Derivation 4: S

V P
V P

pasX
X

VB2PRO1

ne

NP
PRO

je

, X

X

X

X1X2

notdid

X

I

⇓
Derivation 5: S

V P
V P

pasX
X

VB2
PRO
PRO

lui

ne

NP
PRO

je

, X

X

X

X

him

X2

notdid

X

I

⇓
Derivation 6: S

V P
V P

pasX
X

V B
V B

vu

PRO
PRO

lui

ne

NP
PRO

je

, X

X

X

X

him

X

see

notdid

X

I

Notice in derivation 2 that the non-terminal label from the parent node, NP, does

not match the label of the child’s root node, PRO. However, since both labels cover

the source word, je, this is a valid inference.

In derivation 3, the free non-terminal does not span a source syntactic constituent.

This is valid but permitted only for undecorated non-terminals, denoted by the symbol

X .

Notice also that the completed source derivation 6 is not isomorphic to the origi-

nal source parse. The mixed-syntax model allows derivations which is suited for the

primary objective of translation, rather than being constrained to replicate the source

parse.

4.2.11 Tree-to-String Model

Huang et al. (2006a) described a tree-to-string model using a tree-transducer which
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recursively transforms a source parse tree to a target string by repeated applications

of translation rules. The translation rules consist of multi-level tree fragments on

the source side, and a CFG rewrite rule on the target side, linked by their leaf non-

terminals. We approximate this model by using CFG rewrite rules on both source and

target side of the translation rule. Translation rules can still transform multiple levels

of the parse tree but the interior nodes are ignored, as with the mixed-syntax model.

We approximate the tree-transducer based tree-to-string model with a SCFG-based

model. The model is identical to the mixed-syntax model, however, only syntactic

translation rules are extracted from the training corpus. Therefore, decoding with such

a grammar compels the derivation to closely follow the input parse. The same parsed

sentence above can be decoded with a purely syntactic grammar.

Input: S

VP

NE

pas

VB

vu

PRO

lui

NE

ne

NP

PRO

je
Grammar:

〈S→ NP1 V P2 , X → X1 X2〉

〈PRO→ je , X → I〉

〈PRO→ lui , X → him〉

〈V B→ vu , X → see〉

〈V P→ ne PRO1 V B2 pas , X → did not X2 X1〉

Derivation:

Derivation 1: S

VP2NP1

, X

X2X1
⇓

Derivation 2: S

VP2
NP

PRO

je

, X

X2X

I
⇓
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Derivation 3: S

V P
V P

pasVB2PRO1ne

NP
PRO

je

, X

X

X1X2notdid

X

I
⇓

Derivation 4: S

V P
V P

pasVB2
PRO
PRO

lui

ne

NP
PRO

je

, X

X

X

him

X2notdid

X

I

⇓
Derivation 5: S

V P
V P

pasV B
V B

vu

PRO
PRO

lui

ne

NP
PRO

je

, X

X

X

him

X

see

notdid

X

I

4.3 Rule Extraction

We have given the formal definition of the mixed-syntax model and described the al-

gorithm for decoding such a model. In this section, we describe how the synchronous

grammar for this model can be learned from a parallel corpus with parsed source sen-

tences.

4.3.1 Hierarchical Phrase-Based Model Extraction

The rule extraction heuristics for hierarchical phrase-based, described in (Chiang, 2005),

starts with the extraction of initial bilingual phrases from an aligned parallel corpus us-

ing the same criterion as most phrase-based extraction heuristics (Och and Ney, 2004).

From the initial phrases, hierarchical phrase-based rules are extracted by finding

phrases which contain other phrases and replacing the subphrases with a non-terminal

symbol. We give the formation definition in Figure 4.1, based on (Chiang, 2007):

However, this scheme generates a large number of rules which consumes resources

during training and decoding, and also leads to a decrease in translation performance
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due to spurious ambiguity. Therefore, the hierarchical phrase-based extraction heuris-

tics filter the ruleset with the following constraints:

1. initial phrases are limited to a maximum length of 10 words on either side

2. maximum of 5 source symbols

3. a maximum of two non-terminals per rule

4. non-terminals cannot be adjacent on the source side

5. all rules must be at least partially lexicalized

The set of rules, G, is the smallest set which satisfies the following conditions:

1. If 〈s j
i , t

j′

i′ 〉 is an initial phrase, then

〈X → s j
i , X → t j′

i′ 〉

is a rule in G.

2. If 〈X → α,X → γ〉 is a rule in G and 〈s j
i , t

j′

i′ 〉 is an initial phrase such that α =

α1s j
i α2 and γ = γ1t j′

i′ γ2, then

〈X → α1 Xk α2 , X → γ1 Xk γ2 〉

is a rule in G. k is an index not used in α and γ.

Figure 4.1: Definition of hierarchical phrase-based rules extraction from bilingual

phrases

4.3.2 Tree-to-string Model Extraction

In the tree-to-string model, non-terminals are restricted to syntactic spans during both

training and decoding, severely limiting coverage. The formal definition of the extrac-

tion procedure is an extension of the hierarchical phrase-based extraction, Figure 4.2.

We use the same rule filtering heuristic as the mixed-syntax model, which will be de-

scribed below.



102 Chapter 4. Mixed-Syntax Translation

The set of rules, G, is the smallest set which satisfies the following conditions:

1. If 〈s j
i , t

j′

i′ 〉 is an initial phrase which spans a syntactic category A, then

〈A→ s j
i , X → t j′

i′ 〉

is a rule in G.

2. If 〈A→ α,X → γ〉 is a rule in G and 〈s j
i , t

j′

i′ 〉 is an initial phrase which spans a

syntactic category B, such that α = α1s j
i α2 and γ = γ1t j′

i′ γ2, then

〈A→ α1 Bk α2 , X → γ1 Xk γ2 〉

is a rule in G. k is an index not used in α and γ.

Figure 4.2: Definition of tree-to-string rules extraction from bilingual phrases

4.3.3 Mixed-Syntax Model Extraction

To extract rules for the mixed-syntax model, we extend the tree-to-string extraction by

relaxing the constraint of requiring non-terminals, including the root node, to cover

parse constituents. Non-terminals which do not cover parse constituents are undeco-

rated, which we denote with the symbol X , otherwise the non-terminal is decorated

with the syntactic label. A rule can contain a mixture of decorated and undecorated

non-terminals.

The formal definition for the mixed-model extraction is shown in Figure 4.3. It

is clear that the unfiltered extraction method for the hierarchical phrase-based model

described in Figure 4.1 and the mixed-syntax extraction of Figure 4.3 extract the same

rules, given identically aligned corpora, except that the mixed-syntax extraction heuris-

tic decorate some of the non-terminals with syntactic labels.

If the grammar were to be filtered with the same heuristic as the hierarchical gram-

mar, described in Section 4.3.1, this would create a grammar whose rules have the

same form as the filtered hierarchical phrase-based grammar. Namely, the grammar

will only contain translation rules with a maximum of two non-terminals, no rules

with adjacent source non-terminals, and all rules must be at least partially lexicalized.

However, we believe that a deficiency of the hierarchical phrase-based model is

its inability to extract or decode with certain rule-forms without over-generation dur-
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The set of rules, G, is the smallest set which satisfies the following conditions:

1. If 〈s j
i , t

j′

i′ 〉 is an initial phrase which spans a syntactic category A, then

〈A→ s j
i , X → t j′

i′ 〉

is a rule in G. Otherwise

〈X → s j
i , X → t j′

i′ 〉

is a rule in G.

2. If 〈A→ α,X → γ〉 is a rule in G and 〈s j
i , t

j′

i′ 〉 is an initial phrase which spans a

syntactic category B, such that α = α1s j
i α2 and γ = γ1t j′

i′ γ2, then

〈A→ α1 Bk α2 , X → γ1 Xk γ2 〉

is a rule in G. If 〈s j
i , t

j′

i′ 〉 does not span a syntactic category

〈A→ α1 Xk α2 , X → γ1 Xk γ2 〉

is a rule in G. k is an index not used in α and γ.

3. Similarly, if 〈X → α,X → γ〉 is a rule in G,

〈X → α1 Bk α2 , X → γ1 Xk γ2 〉

or

〈X → α1 Xk α2 , X → γ1 Xk γ2 〉

can be created in exactly the same way.

Figure 4.3: Definition of mixed-syntax rules extraction from bilingual phrases

ing extraction and creating spurious ambiguity during decoding. Rules with adjacent

source non-terminals, unlexicalized rules, and rules with more than two non-terminals

can be useful for translation but are filtered from the grammar to reduce these prob-

lems.

The use of constrained syntactic non-terminals decreases the spurious ambiguity

from the mixed-syntax model. We therefore take this opportunity to alter the filter-

ing heuristic to extract and decode with a grammar that contains rule-forms described
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above. However, this must still be balanced with the need to maintain tractability.

The filtering constraints for the mixed-syntax, and tree-to-string model, is set down

below:

1. initial phrases are limited to a maximum length of 10 words on either side

2. maximum of 5 source symbols (i.e words and non-terminals)

3. a maximum of three non-terminals per rule

4. adjacent non-terminals are allowed on the source side if at least one non-terminal

is decorated

5. prohibit translation rules where the source side is a unary rule and a non-terminal.

As can be seen, constraints (1) and (2) are identical to those of the hierarchical

phrase-based filter. We increased the maximum number of non-terminals to three in

constraint (3) after experimentation.

Constraint (4) of the mixed-syntax filter encapsulates and extends the non-adjacent

non-terminal constraint in the hierarchical phrase-based filter. The new constraint con-

tinues to prohibit adjacent undecorated non-terminals to prevent spurious ambiguity.

However, the filter allows rules where one or both adjacent non-terminals are deco-

rated.

The requirement that all rules must be at least partially lexicalized is dropped but

unlexicalized unary rewrite rules are prohibited.

The translation rules forms resulting from this filter are a superset of the rule forms

created using the hierarchical phrase-based filter. The differences include rules with

adjacent source non-terminals, unlexicalized rules and rules with more than two non-

terminals. Of course, the rules are different due to the syntactic label on some of the

non-terminals in the mixed syntax rules.

We use the same filtering constraints for extracting rules for the tree-to-string

model. Since this model has no undecorated non-terminals, the prohibition on adjacent

undecorated non-terminals is redundant.

4.3.4 Examples of Extracted Rules

We give an example of the rules extracted for the mixed-syntax model from an aligned

sentence in Figure 4.4, with a parse tree on the source side. The following initial
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Figure 4.4: Aligned parsed sentence

bilingual phrases are extracted from this aligned sentence:

〈Musharrafs # Musharraf ’s〉

〈Musharrafs letzter # Musharraf ’s last〉

〈Musharrafs letzter Akt # Musharraf ’s last Act〉

〈Musharrafs letzter Akt ? # Musharraf ’s last Act ?〉

〈letzter # Last〉

〈letzter Akt # Last Act〉

〈letzter Akt ? # Last Act ?〉

〈Akt # Act〉

〈Akt ? # Act ?〉

〈? # ?〉

Fully lexicalized translation rules are created from the initial phrases by adding a

source root node to each phrase. The root node is the syntactic label that the source side

of the phrase covers, or the symbol X denoting an undecorated symbol if a syntactic
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label does not exist.

〈NE→Musharrafs # X →Musharraf ’s〉

〈X →Musharrafs letzter # X →Musharraf ’s last〉

〈NP→Musharrafs letzter Akt # X →Musharraf ’s last Act〉

〈TOP→Musharrafs letzter Akt ? # X →Musharraf ’s last Act ?〉

〈ADJA→ letzter # X → last〉

〈X → letzter Akt # X → last Act〉

〈X → letzter Akt ? # X → last Act ?〉

〈NN→ Akt # X → Act〉

〈X → Akt ? # X → Act ?〉

〈PUNC→? # X →?〉

Other rules containing non-terminals on the right-hand-side are created recursively ac-

cording to Figure 4.3 and filtered according to the description in Section 4.3.3. The

following is a non-exhaustive list of rules created from the initial phrase of the com-

plete sentence below. These include rules with syntactic non-terminals:

〈TOP→ NP1 ? # X → X1 ?〉

〈TOP→Musharrafs letzter Akt PUNC1 # X →Musharraf ’s last Act X1〉

〈TOP→ NP1PUNC2 # X → X1X2〉

〈TOP→ NE1 letzter Akt PUNC2 # X → X1 last Act X2〉

〈TOP→Musharrafs ADJA1 NN2 PUNC3 # X →Musharraf ’s X1 X2 X3〉

Hierarchical phrase-based style rules are also extracted where the span does not exactly

match a parse constituent. The root node can also be an undecorated non-terminal but

since the initial phrase in this example spans the source constituent TOP so the root

node remains decorated. We list two examples below.

〈TOP→Musharrafs X1 ? # X →Musharraf ’s X1 ?〉

〈TOP→Musharrafs letzter X1 # X →Musharraf ’s last X1〉
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Rules are also extracted which contain a mixture of decorated and undecorated non-

terminals:

〈TOP→Musharrafs X1 PUNC2 # X →Musharraf ’s X1 X2〉

〈TOP→ X1 Akt PUNC2 # X → X1 Act X2〉

Rules with adjacent source non-terminals, unlexicalized rules, and rules with more

than two non-terminals are also extracted:

〈TOP→ NE1 X2 PUNC3 # X → X1 X2 X3〉

The number of rules extracted by the mixed-syntax extraction heuristics is larger

than those from the hierarchical phrase-based heuristics. For instance, 103 mixed-

syntax rules were extracted from this aligned sentence, compared to 32 hierarchical

phrase-based rules. In contrast, 51 were extracted for the tree-to-string grammar.

4.4 Experiments

We use the Moses implementation of the hierarchical phrase-based decoder as de-

scribed in Hoang et al. (2009). For the tree-to-string model, we use the SCFG-based

approximation described in Section 4.2.11. The decoder implements the CKY+ algo-

rithm with cube pruning which is kept identical for all experiments for fair comparison.

The definition of maximum rule span as described in Section 4.2.8 is used through-

out unless otherwise mentioned; all non-terminals can cover a maximum of 7 source

words.

The translation models were trained on the New Commentary 2009 corpus 1, tuning

on a held-out set. Table 4.2 gives more details on the datasets used. The nc test2007

dataset was used for testing.

The training corpus was cleaned and tokenized using standard techniques as imple-

mented in the Moses toolkit (Koehn et al., 2007) and aligned using GIZA++ (Och and

Ney, 2003). Minimum error rate training (Och, 2003) was used for tuning the weights

in the log-linear model. The target side of the training data was also used to create

a trigram language model which was used for each experiment. All experiments use

truecased data and results are reported in case-sensitive BLEU scores (Papineni et al.,

2002). A standard hierarchical model was used as a baseline.
1http://www.statmt.org/wmt09/

http://www.statmt.org/wmt09/


108 Chapter 4. Mixed-Syntax Translation

German English

Train Sentences 82,306

Words 2,034,373 1,965,325

Tune Sentences 2000

Test Sentences 1026

Table 4.2: Training, tuning, and test conditions

The Bitpar parser2 was used to parse the German portion of the training, tuning

and test data. 2042 sentences in the training corpus failed to parse and were discarded

from the training for both hierarchical phrase-based and syntactic models to ensure

that they train on identical amounts of data. Similarly, 991 out of 1026 sentences were

parsable in the test set. To compare like-for-like, the baseline hierarchical phrase-based

system translates the same 991 sentences, but evaluated over 1026 sentences. For an

alternative baseline comparison, we also trained and tested a hierarchical phrase-based

model which used all the available data. The result was used as the baseline for the

shallow parsing experiments in which every sentence is parseable.

The mixed-syntax model is not dependent on the tree structure of the source syn-

tactic information, only that the syntactic constituents identify continuous spans. A

shallow parser (also called partial parser or chunker) (Abney, 1991) satisfies this re-

quirement by recognizing and labelling simple syntactic structures without necessarily

building a coherent syntactic tree for the entire sentence. In the shallow parsing ex-

periments, chunk tags from the Treetagger chunker (Schmidt and Schulte im Walde,

2000) were used instead of the full parse tree.

In addition to the mixed-syntax model described previously, we also investigate

another approach to combining hierarchical phrase-based and syntactic models, first

described by Liu et al. (2009b). This approach jointly decodes with a hierarchical

phrase-based and the tree-to-string model, producing a combined hypergraph of trans-

lation derivations. Translations can be extracted from the hypergraph that uses trans-

lation rules from both models. Liu et al. (2009b) found that this improved translation

for large scale Chinese-English task by 1.5 BLEU over a hierarchical phrase-based

baseline.

2http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html
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4.4.1 Results

Using the naı̈ve tree-to-string model constrained with syntactic non-terminals signif-

icantly decreases translation quality, Table 4.3, line (2). This confirms the results

from Mi et al. (2008); Huang (2008); Liu et al. (2009b).

Using the hierarchical phrase-based jointly with the tree-to-string model resulted in

little improvement, line (3) which contradicts Liu et al. (2009b). However, a difference

in the implementation of the decoding algorithm may explain this contradiction. In Liu

et al. (2009b), hypotheses created from rules from each translation model are added to

the chart separately.

When jointly decoding with Moses, translation rules from the two models form one

priority queue for cube pruning. The cube pruning limit is unchanged regardless of the

number of models. This speeds up decoding but creates competition between the two

models within the priority queue. It was noticed that the MERT tuning adjusted the

weights so that translation rules from the tree-to-string model are rarely used during

joint decoding, suggesting that the broader coverage of the hierarchical phrase-based

model was preferred over the precision of the tree-to-string model.

While joint decoding shows minor change (+0.2 BLEU), the mixed-syntax model

improves translation quality by +0.8 BLEU over the hierarchical phrase-based base-

line, (line 4).

Model % BLEU

1 Hierarchical 15.9

2 Tree-to-string 14.9

3 Joint 16.1

4 Mixed-syntax 16.7

Table 4.3: German–English results for hierarchical and syntactic models, in %BLEU

The maximum number of non-terminals per rule was varied to find the optimal

constraint for this parameter. Reducing the maximum number of non-terminals per

rule reduces translation quality but increasing it has little effect on the mixed-syntax

model, Table 4.4.



110 Chapter 4. Mixed-Syntax Translation

# non-terms 2 3 4 5

% BLEU 16.5 16.8 16.7 16.8

Table 4.4: Effect on %BLEU of varying maximum number of non-terminals

4.4.2 Rule Span Width During Decoding

Figure 4.5 shows the source span width that translation rules cover when translating

the test dataset for the hierarchical phrase-based model and the mixed-syntax model.

The mixed-syntax model makes use of proportionally more unigram translation rules

than the hierarchical model. This is surprising as the mixed-syntax grammar has rules

with three non-terminals which can each cover seven source words, while translation

rules in the hierarchical model have a maximum of two non-terminals.

Figure 4.5: Source span lengths

However, analyzing the usage of the glue rules gives us a better indication of

how the mixed-syntax model is able to improve translation. All models use the glue

rule (Chiang, 2005), which allows the decoder to stop building hierarchical structures

and instead concatenate partial translations without reordering. For the sake of effi-

ciency, the decoder imposes a maximum span limit above which the glue rule must be

used. The use of the glue rule, therefore, indicates one of two issues during decoding.

It can signal that the artificial span limit has been reached. It can also indicate the

failure of the translation model to explain the translation as the model does not have

the required translation rules. Therefore, a decrease in the use of glue rules is evidence

of the better explanatory power of the mixed-syntax model.

As can be seen in Figure 4.6, there is significantly less usage of the glue rules when
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decoding with the mixed-syntax model.

Figure 4.6: Length and count of glue rules used decoding test set

4.4.3 Example Decoding Derivation

An example of an input sentence, and the best translation found by the hierarchical

phrase-based and mixed-syntax model can be seen in Table 4.5. Both translations are

lexically identical but the output of the hierarchical model needs to be reordered to be

grammatically correct, which the mixed-syntax model has achieved.

Input

laut János Veres wäre dies im ersten Quartal 2008 möglich .

Hierarchical phrase-based model output

according to János Veres this in the first quarter of 2008 would be possible .

Mixed-syntax model output

according to János Veres this would be possible in the first quarter of 2008 .

Table 4.5: Example input and output decoding with each model

Figure 4.7 is the parsed input sentence to a mixed-syntax model. Contrast the

derivations produced by the hierarchical grammar, Figure 4.8, with that produced with

the mixed-syntax model, Figure 4.9. The rules used by the mixed-syntax model during

the translation of the sentence is shown in Figure 4.10.

The mixed-syntax derivation use several rules which are partially decorated. Cru-

cially, the last rule in the list above reorders the PP phrase and the non-syntactic phrase
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Figure 4.7: Example input parse tree

Figure 4.8: Derivation with Hierarchical model

X to generate the grammatically correct output. The other non-lexicalized rules mono-

tonically concatenate the output. This can be performed by the glue rule, but never-

theless, the use of translation rules based on empirical evidence allows the decoder to

make a better comparison with hypotheses that have reordered the subphrases. Overall,

the derivation rely less on the glue rules than the hierarchical model.
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Figure 4.9: Derivation with mixed-syntax model

〈PN→ NE1 NE2 # X → X1 X2〉

〈X →VAFIN1 PDS2 # X → X1 X2〉

〈X → ADJA1 NN2 # X → X1 X2〉

〈X → APPRART1 X2 CARD3 # X → X1 X2 X3〉

〈X → PP1 X2 PUNC3 # X → X2 X1 X3〉

Figure 4.10: Rules used by the mixed-syntax model to translate sentence

4.5 Using Shallow Parsers

Parse trees of the source language provide useful information that we have exploited

with the mixed-syntax model. However, parsers are an expensive resource as they

usually need manually annotated training treebanks. Parse errors are also problematic

and more frequent when sentences not in the same domain as the parser training corpus.

The brittleness of many parsers also causes some sentences to be unparseable. For
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example, our original test corpus of 1026 sentences contained 35 unparsable sentences.

Thus, high quality parsers are unavailable for many source languages of interest.

Parse forests can be used to mitigate the parse errors, allowing the decoder to

choose from many alternative parses, (Mi et al., 2008).

However, the mixed-syntax translation model is not dependent on the linguistic

information being in a tree structure, only that the labels identify continuous spans.

Shallow parsers (Abney, 1991) do just that. They offer high accuracy, are not so brit-

tle to out-of-domain data and identify chunk phrases similar to parser-based syntactic

phrases that may be useful for translation.

We create a mixed-syntax model for the same German-English language pair, re-

placing the use of parse constituents in the previous sections with chunk phrases.

4.5.1 Experiments with Shallow Parsers

We use the same data as described earlier in this chapter to train, tune and test our

approach. The same alignment information was used to ensure consistency. The Tree-

tagger chunker (Schmidt and Schulte im Walde, 2000) was used to tag the source

(German) side of the corpus. The chunker successfully processed all sentences in the

training and test dataset so no sentences were excluded. The increase in training data,

as well as the ability to translate all sentences in the test set, accounts for the higher

hierarchical baseline than the previous experiments with parsed data. We use noun,

verb and prepositional chunks, as well as part-of-speech tags, emitted by the shallow

parser.

Results are shown in Table 4.6. Using chunk tags, we see a gain of 0.5 BLEU,

showing that gains can be obtained with simpler tools than full syntactic parsers.

Model % BLEU

1 Hierarchical 16.3

2 Mixed-syntax, using chunk tags 16.8

Table 4.6: German–English results for hierarchical and mixed-syntax models using

chunk tags, in %BLEU

The use of glue rules by the mixed-syntax model was reduced, Figure 4.11, similar

to the trend with saw in Section 4.4.2. This shows once again that the mixed-syntax
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model can explain more of the translation with the use of empirically informed trans-

lation rules.

Figure 4.11: Chunk - Length and count of glue rules used decoding test set

The same example sentence in Table 4.5 is shown with chunk tags in Figure 4.12.

Figure 4.12: Chunked sentence

The mixed-syntax model with chunk tags produced the derivation tree shown in

Figure 4.13. The derivation makes use of an unlexicalized rule local reordering. In this

example, it uses the same number of glue rules as the hierarchical derivation but the

output is grammatically correct by not translating the last source word.

according to János Veres this would be in the first quarter of 2008 .

Table 4.7: Example best output by mixed-syntax model with chunk tags
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Figure 4.13: Translated chunked sentence

4.6 English to German

We experimented with the reverse language direction to see if the mixed-syntax model

still increased translation quality. The results were positive but less pronounced, Ta-

ble 4.8.

Model % BLEU

1 Hierarchical 10.2

2 Mixed-syntax 10.6

Table 4.8: English–German results in %BLEU
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4.7 Large Training Corpora

As with previous chapters, the mixed-syntax model was developed and tested on a

small dataset. In this section, we attempt to scale it to more training data.

The Europarl3 corpora was used as the training data for a large German-English

model. The training corpus contains 1,540,549 parallel sentences but once cleaned

and filtered of unparseable sentences this was reduced to 1,446,22 sentences. Note

that this is the same dataset as the large data experiments in Chapter 2, with more

sentences discarded due to unparseable sentences. The language model was trained on

the superset of the parallel corpus of 1,843,035 sentences.

In-domain, hold-out data was used for MERT tuning and tested on in and out-of-

domain test sets. Table 4.9 gives more details on the datasets used. Again, unparseable

sentences are not used.

German English Corpus ID

Train Sentences 1,446,224 Europarl v5

Words 37,420,876 39,464,626

Tune Sentences 1910 dev2006

Test (out-of-domain) Sentences 1042 nc test2007 v2

Test (in-domain) Sentences 1920 devtest2006

Table 4.9: Training, tuning, and test conditions

The translation performances, as measure by BLEU, are shown in Table 4.10. The

results for the mixed-syntax model relative to the hierarchical phrase-based model are

disappointing, showing reduced performance for both in and out-of-domain test sets.

Model In-Domain Out-of-domain

1 Hierarchical 22.1 16.5

2 Mixed-syntax 21.6 16.3

Table 4.10: German–English results, trained on Europarl corpus, in %BLEU

Parse errors may be a cause of this degradation. For example, the word Gewiss

is only seen in the training as an adverb, but is also seen in the test data as a noun.

3http://www.statmt.org/europarl/

http://www.statmt.org/europarl/
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Methods based on parse forest Huang et al. (2006a); Liu et al. (2006, 2007); Mi et al.

(2008); Mi and Huang (2008) may ameliorate this problem.

However, a major reason for the poor performance of the mixed-syntax model

when trained with large training corpora is the increased number of rules available

for each source span. This causes multiple derivations that generates the same target

string, reducing in the diversity of the n-best list, Figure 4.14. Each sentence gener-

ates 5.5 on average in 100-best list using the mixed-syntax model, trained on the small

training corpora of Section 4.4,. However, for larger training data this falls to 2.4, com-

pared to 3.4 when using the hierarchical phrase-based model. In turn, this affects the

performance of the tuning algorithm. The increased number of rules also causes search

Figure 4.14: Number of unique target string per sentence in 100-best list during tuning

errors during decoding as the fixed cube-pruning pop limit means that the number of

target strings evaluated is reduced.

4.8 Improved Mixed-Syntax Extraction

The mixed-syntax model offers better translation when trained with a small corpus.

However, when trained with large corpora the model produces more derivations which

result in the same target sentence. This spurious ambiguity decreases translation qual-

ity as it reduces the number of target sentences seen during decoding. Spurious am-

biguity also reduces the number of unique translations in the n-best list during tuning,

diminishing the accuracy of the tuning algorithm.

In this section, we apply a range of heuristics to contain spurious ambiguity in the
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mixed-syntax model. This reduces the size of the grammar extracted from the training

data, reducing spurious ambiguity, but does not reduce the ability of the translation

model to translate.

We also alter the training and decoding algorithm so that longer-range dependen-

cies can be modelled while maintaining tractability.

These changes turn the translation performance of the mixed-syntax model from

under-performing the hierarchical phrase-based baseline for large training corpora, to

outperforming the baseline by 0.6 BLEU (1.3 BLEU out-of-domain).

4.8.1 Issues with Mixed-Syntax Extraction

The mixed-syntax model extraction algorithm is based on the original hierarchical

phrase-based extraction algorithm, described in Section 4.3.1. In the hierarchical

phrase-based extraction, initial fully-lexicalized translation rules are extracted from

the training data. Translation rules containing subphrases are created by replacing

subphrases in existing translation rules with a non-terminal.

The mixed-syntax extraction follows this recursive algorithm but labels the non-

terminals with the syntactic category from a source language parser or shallow chun-

ker, where such labels exist for a particular source span. The filtering constraints is

also modified to allow rules with three non-terminal, consecutive non-terminals ad un-

lexicalized, as describe in Section 4.3.3.

However, the mixed-syntax extraction algorithm give rise to four main issues which

we tackle in this section.

Firstly, the parser often labels a span in the source sentence with multiple labels.

Consider the example in Figure 4.15 of partial aligned sentence and the corresponding

word alignment and parse information. The source range on the word mir is has three

constituent labels; NN, NP and PN. The multiple labels give rise to three translation

rules extracted from the same span which are identical apart from the label of the first

non-terminal.

〈X → PN1 liegt daran , # X → X1 keen that〉

〈X → NP1 liegt daran , # X → X1 keen that〉

〈X → NN1 liegt daran , # X → X1 keen that〉

We believe that the functionality of such rules largely overlap. The application of

each rule create the same output sentence, wasting the limited resources of the decoder.
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PN

NP

NN

mir

VVFIN

liegt

PROAV

daran

PUNC

,

thatkeenamI

Figure 4.15: Example partial sentence, alignment information, and parse structure

This causes degraded translation performance as the number of derivations created

during decoding is usually limited by cube pruning limits (Huang and Chiang, 2007)

and beam thresholds.

To counter this affect, therefore, only the top most label in the parse tree for each

source range is used during extraction. In the above example, the word mir is thus only

labelled with the category PN, and hence, only the first rule above is extracted.

Secondly, the algorithm extract rules with multiple decorated and undecorated non-

terminals but little lexical evidence. This also occur in the extraction of hierarchical

grammar but is prevalent in the mixed-syntax grammar due to the relaxation of the

filtering constraints, allowing increased number of non-terminals, consecutive non-

terminals and unlexicalized rules. To exclude those rules with little empirical evidence,

translation rules with undecorated non-terminals must also contain at least the same

number of source words. For example, the following rule is prohibited as it contains

an undecorated non-terminal but no source words.

〈X → PN1 X2 PUNC3 # X → X1 X2 X3〉

Thirdly, the mixed-syntax extraction heuristic produces translation rules with non-

terminals in the first and last position of the source phrase. For undecorated non-

terminals in these positions, it allow flexibility in the span to which they can be applied

during decoding. However, it can also cause such rules to be misapplied to the incorrect

source range.

Such rules are permitted in the hierarchical phrase-based extraction heuristic. Since

the mixed-syntax model is able to make use of decorated non-terminals, we attempt to

reduce the opportunity for translation rules to be misapplied by anchoring them more
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firmly to the source range with lexical and decorated non-terminals. Therefore, the

extraction heuristic is refined to allow only decorated non-terminals in the first and

last source position, not undecorated non-terminals. Translation rules such as the one

below are now excluded from the grammar.

〈X → mir X1 # X → I am X1〉

Lastly, we model long-range dependency by allowing decorated non-terminals to

cover an unlimited number of words. Decorated non-terminals can only be specific ap-

plication, they can only applied where they match the label of the source span. There-

fore, widening the span limit for decorated non-terminal does not increase spurious

ambiguity or decrease decoding speed. Undecorated non-terminals are still constrained

by the span limit.

4.8.2 New Mixed-Syntax Extraction Algorithm

The new mixed-syntax extraction algorithm extract translation rules from parallel sen-

tences in three stages. The first stage identifies initial, fully lexicalized phrases. This

is based on the phrase-based model extraction heuristics and is identical to that used

in the hierarchical extraction of Section 4.3.1, however, there is no size limit for initial

phrases. The source syntactic label of the entire span, if any, is also record.

The second stage creates a lattice from each source word and initial phrases. Each

vertex in the lattice correspond to a word position in the source sentence. Each arc

correspond to a symbol in the source, either a word or a non-terminal. Arcs connect

the start and end position of each symbol. The outline of the algorithm is shown in

Figure 4.16.

The result is a lattice consisting of a set of labelled arcs, An,m, each spanning the

range n to m. The label of each arc is a word from the source sentence or a constituent

label from the source parse.

The third stage extract rules by iteratively traversing the lattice, Figure 4.17. The

two predicates, ‘is a valid intermediate rule’ and ‘is a valid final rule’, replaces the

filtering constrains of the original extraction algorithm.

A rule is a valid intermediate rule if there is a possibility a final rule can be created

by appending a source edge to it. Intermediate rules have the following constraints:

1. Contains less than 5 source terminal symbols

2. No undecorated source symbols are adjacent on the source side
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Require: source and target sentence, s1:|s| and t1:|t|, source labels {Vi, j}∗ where 0 6 i < |s| and

i+1 < j 6 |s|

1st stage. Identify fully lexicalized rules

F← all fully lexicalized rules

2nd stage. Create lattice

for all n,m where 0 6 n < |s| and n+1 < m 6 |s| do

An,m←{}
end for

for all words sn ∈ s1:|s| source sentence do

Add an arc with label sn to set of of arcs An,n+1

end for

for all initial phrase r ∈ F , with source left-hand-side L, with source range [n, m] do

Add an arc with label L to set of arcs An,m

end for

Figure 4.16: Identifying and Creating Lattice for Rule Extraction

3. Contains a maximum of 3 non-terminals

4. Undecorated non-terminals span a maximum of 7 source words

The ‘is a valid final rule’ predicate ensure rules that are added to the translation gram-

mar have the following additional constraints:

1. First and last source symbols are not undecorated non-terminals

2. Entire rule span an initial phrase

3. Number of undecorated non-terminals is less than number of terminals on the

source side

4. Is not composed of a unary non-terminal on the source side

The example sentence of Figure 4.18 result in 1133 translation rules when extracted

with the new heuristic, compared to 1965 rules using the old heuristics.

The old heuristics extracted rules such as those below, containing undecorated non-

terminals in the first or last source position, or unlexicalized rules with undecorated
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output grammar G←{}
for all 0 ≤ i < |s| do

Create empty rule r starting and ending at i

Create translation rules from previous rule r

end for

return G

Function Create translation rules from previous rule rin

start← first source position of rule rin

end← last source position of rule rin

for all end < i≤ |s| and L ∈ Aend,i do

rout ← append label L to rin, spanning start to i

if rout is valid intermediate rule then

Create translation rules from previous rule rout

end if

if rout is valid final rule then

for all non-terminals B ∈ Astart,i do

rvalid ← rout , with source left-hand-side B

Add G← rvalid

end for

end if

end for

Figure 4.17: Creating Mixed-Syntax Translation Rules

non-terminals.

〈X → liegt daran X1 # X → keen X1〉

〈X → NN1X2 # X → X1X2〉

In contrast, the new heuristics does not extract these rules but have extracted rules from

large spans which model long-range patterns.

〈X →CNP1 NP2 # X → X1 X2〉

〈TOP→ S1 . # X → X1 . 〉
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4.8.3 Results

Table 4.11 shows the number of translation rules extracted from the aligned training

corpora.

Extraction Algorithm Number of rules

1 Hierarchical 500m

2 Mixed-syntax (original) 2,664m

3 Mixed-syntax (new) 1,435m

4 Mixed-syntax (new, allow edge undecorated non-terminals) 2,104m

Table 4.11: Number of translation rules extracted for each model

Re-evaluating the mixed-syntax model with the new grammar shows markedly im-

proved results in both in and out-of-domain test sets, outperforming the hierarchical

phrase-based baseline, Table 4.12.

Model In-Domain Out-of-domain

1 Hierarchical 22.1 16.5

2 Mixed-syntax (old) 21.6 16.3

3 Mixed-syntax (new) 22.7 17.8
4 Mixed-syntax (new, allow edge undecorated non-terminals) 22.9 17.7

Table 4.12: German–English results, using new extraction algorithm, in %BLEU

Varying the maximum span limit for decorated non-terminal during decoding, a

small but positive gain in translation quality can be seen when the decoder is allowed

to apply translation rules to longer range spans, Table 4.13.

4.9 Conclusion

We have presented in this chapter a novel model which combines the generality of the

hierarchical phrase-based approach with the specificity of a tree-to-string model. The

model is able to take advantage of linguistic information in the input parse and training

corpus, without being rigidly constrained by syntax.
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Max. span for decorated non-terminals In-Domain

3 22.6

7 22.6

10 22.6

15 22.7
20 22.7

unlimited 22.7

Table 4.13: Effect of varying max. span limit on translation quality, in %BLEU

Using the specificity of syntactic information allows the model to expand the rule

forms that can be extracted and used during decoding, while maintaining tractabil-

ity. The expanded grammar enables the translation model to better explain more of

the translation, without relying on the empirically uninformed glue rules, leading to

improved translation.
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Conclusion and Future Work

This thesis has considered some uses of linguistic information in current statistical

machine translation models.

Chapter 2 described the factored phrase-based model which extends the phrase-

based model to incorporate linguistic information as additional factors in the represen-

tation of words. We also show how the factored translation model can be decomposed

into multiple steps where each step outputs a subset of the target factors, conditioned

on a subset of the available source or target factors.

We see how the factored model aids in the disambiguation of source words and

improves grammaticality with sequence models over target factors. We also see the

factored decomposition can be configured to improve coverage of previously out-of-

vocabulary words. We show that the factored model improves translation over a stan-

dard phrase-based mode by as much as 0.9 BLEU for small German-English training

corpora, and 0.2 BLEU for larger corpora.

The factored model is a general framework which allows any word-level informa-

tion to be integrated into a a phrase-based model. It has also been used as the basis of

other research (Avramidis and Koehn, 2008; Cettolo et al., 2008; Yeniterzi and Oflazer,

2010) which focuses on specific uses of linguistic information for particular language

pairs.

In Chapter 3, we extended the factored model to the factored template model. This

model generalizes translation with part-of-speech tags to improve reordering. We see

that the factored template model performs poorly on it own but when combined with a

standard factored phrase-based model, performance improves by as much as 1.1 BLEU

on a small French-English system. We also see that when using the combined model,

the linguistically motivated template reordering model is overwhelmingly preferred

127
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over the distance-based reordering model.

Both the factored model and factored template model, however, are wedded to

word-level information which limits their usefulness for improving long-range depen-

dency. In Chapter 4, we extended the word-level information to using information on

continuous spans. We also transition from the phrase-based model to models based

on synchronous context-free grammar which also offer a natural fit for multi-word lin-

guistic annotation. We described a novel tree-to-string model, the mixed-syntax model,

which combines the specificity of syntactic models and the generality of the hierar-

chical phrase-based model. This model uses source language syntactic information to

inform translation.

We show that the model is able to explain translation better, leading to a 0.8 BLEU

improvement over the baseline hierarchical phrase-based model for a small German-

English task. Also, the mixed-syntax model requires only labels on continuous source

spans, it is not dependent on a tree structure, therefore, other types of syntactic infor-

mation can be integrated into the model. We experimented with a shallow parser and

see a gain of 0.5 BLEU for the same dataset.

Experimenting with large training corpora shows the difficulty of improving over

the linguistically uninformed baseline by the factored model and factored template

model. The word-level integration of linguistic information into these models restrict

the influence of such information to a small window. The availability of more training

data diminishes the advantage of using word-level information in more linguistically

motivated models.

Applying large training data to the mixed-syntax showed that translation perfor-

mance actually decrease, relative to the linguistically unmotivated baseline, due to

spurious ambiguity caused by the extraction of translation rules with overlapping func-

tionality. We therefore changed the grammar filtering heuristic to rebalance our desire

to take advantage of the mixed-syntax model to extract useful translation, with the need

to contain spurious ambiguity. This substantially reduced the size of the grammar but

increased translation quality of 0.6 BLEU (1.3 out-of-domain) over the baseline.

The core finding of this thesis is that attempting to rigidly model translation as a

linguistic transfer results in degraded performance. However, by combining the princi-

ples of empirically-motivated statistical models with linguistically-motivated models,

we are able to achieve better translation performance.
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5.1 Future Work

The introduction of phrase-based models into statistical machine translation has brought

with them a range of techniques that have greatly enhanced the field. The log-linear

model, discriminative training, phrase-extraction from word alignments, beam search

are some of the innovations which were started or popularized by these models. Phrase-

based models still have an important place for their simplicity, efficiency and low re-

source consumption.

However, formally linguistic approaches based on formalisms such as a synchronous

context-free-grammar, tree transduction, and synchronous tree-substitution grammar

discussed in Chapter 4 are undoubtedly the future of general purpose, state-of-the-art

machine translation. More powerful formalisms allow for more linguistic constraints.

In future work, we would like to explore the range of formalisms available to assess

their strengths and weaknesses, and their suitability for machine translation.

With the mixed-syntax model, we integrated source language syntactic information

into the hierarchical phrase-based model to create a model that has the advantage of

both syntactic and non-syntactic approaches. We would like to extend this in a number

of ways.

Firstly, the mixed-syntax model have hitherto only made use of source syntax in-

formation but does not enforce grammaticality on the output. Incorporating target

syntactic information into this model would be the next logical step.

Secondly, we have only used one source of syntactic information at a time in the

mixed-syntax model. However, we saw that using parse tree labels and shallow chunk

tags independently improves translation. This contrasts with the factored model of

Chapter 2 where multiple linguistic information such as POS tags, morphology and

stems were often used simultaneously. We would like to study models which can

incorporate such heterogenous data in a syntactic model.

Thirdly, we have so far relied on linguistic information from external tools. This

brings with it a number of disadvantages, such as reliance of language-dependent tools,

their reliability and appropriateness for machine translation. It would be interesting to

develop annotations that can be used with the mixed-syntax model but are specifically

tuned for the task of translation.

Lastly, our experimentation with different formalisms, models and heuristics has

shown there are many similarities between the phrase-based, hierarchical and syntax

models. In fact, systems based on phrase-based, hierarchical or syntax models can be
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viewed as identical, apart from the translation model. The translation model sits at

the core of any translation system, its purpose is to propose translations which other

models in the system can then rank. Therefore, it is important to ensure that the trans-

lation model is able to learn from the training data and it has good inductive bias. That

is, given a previously unseen input sentence, a good translation model should propose

more good translations and less bad ones.

This is the simple, underlying reason for the choices we make when deciding which

formalism, model, heuristic, rule set, to choose. Whether and how we use linguistic

information, as with the other choices, is a pragmatic decision based on our domain

knowledge of how it will improve the bias of the translation model. In future work, we

would like to quantify the affect that these decisions have on the translation model and

how this ultimately affect translation quality.
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